untitled

Similar documents

untitled

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

( ) Loewner SLE 13 February


Part () () Γ Part ,

II Brown Brown

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

(Stochastic Thermodynsmics) Langevin Langevin

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

[1][2] [3] *1 Defnton 1.1. W () = σ 2 dt [2] Defnton 1.2. W (t ) Defnton 1.3. W () = E[W (t)] = Cov[W (t), W (s)] = E[W (t)w (s)] = σ 2 mn{s, t} Propo

201711grade1ouyou.pdf

Grushin 2MA16039T

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

Stoch. Integral & SDE (S. Hiraba) 1 1 (Definition of Stochastic Processes),, t, X t = X t (ω)., 1, 2,, n = 1, 2,..., X n = X n (ω).,., ω Ω,,.,,

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0


1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

mf.dvi

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

tokei01.dvi

6.1 (P (P (P (P (P (P (, P (, P.

Chap11.dvi


( ) (Appendix) *

³ÎΨÏÀ

2014 S hara/lectures/lectures-j.html r 1 S phone: ,


i 18 2H 2 + O 2 2H 2 + ( ) 3K

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

6.1 (P (P (P (P (P (P (, P (, P.101

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

error_g1.eps

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

2011 ( ) ( ) ( ),,.,,.,, ,.. (. ), 1. ( ). ( ) ( ). : obata/,.,. ( )

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

1

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

Green

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

構造と連続体の力学基礎

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

1 Tokyo Daily Rainfall (mm) Days (mm)



( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

untitled


DVIOUT

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

C 1 -path x t x 1 (f(x u), dx u ) rough path analyi p-variation (1 < p < 2) rough path 2 Introduction f(x) = (fj i(x)) 1 i n,1 j d (x R d ) (n, d) Cb

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

chap9.dvi

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

A

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

I 1

renshumondai-kaito.dvi

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(1) (2) (3) (4) 1

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x


5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

30

b3e2003.dvi

untitled

10:30 12:00 P.G. vs vs vs 2

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

数理統計学Iノート

IA September 25, 2017 ( ) I = [a, b], f (x) I = (a 0 = a < a 1 < < a m = b) I ( ) (partition) S (, f (x)) = w (I k ) I k a k a k 1 S (, f (x)) = I k 2

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

II 2 II

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

Z: Q: R: C: sin 6 5 ζ a, b

2011de.dvi


1. A0 A B A0 A : A1,...,A5 B : B1,...,B


1 1 [1] ( 2,625 [2] ( 2, ( ) /

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n = 0, 1,,...)., t u(t) = F (u(t)) (1). (1), u n+1 u n t = F (u n ) u n+1 = u n + tf (u n )., t

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

2 2 L 5 2. L L L L k.....

Transcription:

3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t) : m Wiener (Wiener process) m Wiener W i (t) (i =,,,m) W (t) =(W (t),w (t),,w m (t)) T Wiener dx(t) =f(t, X)dt + g(t, X)dW (t), t [,T], X( )=X (3.) (3.) (stochastic initial-value problem) (3.) X(t, ω) (stochastic process, random process) t (probability space) (Ω, A,P) (random variable) Ω: (sample space) A: σ (σ algebra) P : (probability measure) 3

t X(t, ) ω X(,ω) (trajectory) E: Ω (mean) X(ω) E(X(ω)) ω X(t) E(X) 953. 978. 3.. Wiener Wiener Wiener Nobert Wiener Brown 88 R. Brown Wiener W (t) (t ) (i) P (W () = ) =, (ii) E(W (t)) = t [, ), (iii) E(W (t)w (s)) = min(t, s) Gauss (normal process) Wiener E(W (t) W (s)) =, E((W (t) W (s)) )=t s, s t E({W (t ) W (t )}{W (t 4 ) W (t 3 )}) =, t t t 3 t 4 (3.3) Wiener (3.3) W (t) W (s) ( s t), t s (normal distribution) N(; t s) Wiener t [,T] h = t k+ t k = T/N : t k (k =,,...,N) Wiener (increment) W k = W (t k+ ) W (t k ) 3

Wiener W (t n ) n W (t n )= W k, n =,,...,N (3.4) k= W k, h N(; h) Wiener, N(; ) (random numbers) ξ k W k = ξ k h Box Muller (Box-Muller method) Marsaglia (Polar Marsaglia method) Wiener 3. (i) (pseudo random numbers) C drand48() (ii) Box Muller (iii) drand48() (seed) 3. 3. Wiener Wiener Wiener W (N) (t, ω) =W (t k,ω)+(w(t k+,ω) W (t k,ω)) t t k, t k+ t k t k t t k+ (3.5) h (N ) W (N) (t, ω) Wiener W (t, ω) Wiener dx(t) =dw (t), X() = (3.4) 3.. (3.) X(t) dx(t) 3 3

.5 -.5 X - -.5 - -.5..4.6.8 t 3.: Wiener (stochastic integral equations) X(t) =X( )+ f(s, X(s)) ds + (stochastic integral) k= g(s, X(s)) dw (s) (3.6) n g(s, X(s)) dw (s) = lim g (t k,λx(t k+ )+( λ)x(t k )) W k (3.7) t h λ λ {t k } <t < <t k <t k+ < <t n = t W k = W (t k+ ) W (t k ),h =max(t k+ t k ) λ λ =, (3.7) (Itô-type) λ =/ Stratonovich (Stratonovich-type) λ = λ =/ (3.) Stratonovich S 3 4

S g(s, X(s)) dw (s) g(s, X(s)) dw (s) S S dx(t) =f(t, X)dt + g(t, X)dW (t), dx(t) = f(t, X)dt + g(t, X) dw (t) (diffusion process) martingale S martingale S b a g(s, X(s)) dw (s) = b a g(s, X(s)) dw (s)+ S b dx = f(t, X)dt + g(t, X) dw (t) [ dx = f + ] g x g (t, X)dt + g(t, X)dW (t) dx = f(t, X)dt + g(t, X)dW (t) S [ dx = f ] g x g (t, X)dt + g(t, X) dw (t) a [ ] g x g (s, X(s)) ds. (3.8) 3 5

3. 3.. f(t, x) g(t, x) (t, x) [,T] R. t [,T], x, y R K (a) f(t, x) f(t, y) + g(t, x) g(t, y) K x y. (b) f(t, x) + g(t, x) K ( + x ). 3. X W (t)(t >) E((X ) ). (3.6) X(t) [,T] sup [t,t ] E((X(t)) ) X = {X(t),t [,T]} Y = {Y (t),t [,T]} ( ) P sup X(t) Y (t) = [,T ] = (Itô formula) 3. φ(t, x) [,T] R X(t) φ t (t, x) =φ t, φ x (t, x) =φ x, dx(t) =f(t)dt + g(t)dw (t) φ x (t, x) =φ xx [,T] Y (t) =φ(t, X(t)) [,T] dy (t) =[φ t + fφ x + g φ xx ](t, X(t)) dt +[gφ x ](t, X(t)) dw (t) (3.9) L f = t + f x + g x, L g = g x 3 6

(3.9) dy (t) =[L f φ](t, X(t)) dt +[L g φ](t, X(t)) dw (t) (3.) t [,T] Y (t) =Y ( )+ [L f φ](s, X(s)) ds + [L g φ](s, X(s)) dw (s) (3.) 3..3 3. ( logistic ) logistic dx dt =[α βx(t)]x(t) (3.) x x /x x α βx α, β α dx(t) =X(α βx)dt + σx dw (t) (3.3) W (t) Wiener σ σ 3. 3.6 α =,β= σ =.,.5,.,.5,. X() = h = 4 Euler σ (3.) g(t, x) (i) x g(t) (additive noise) (ii) (multiplicative noise) Langevin 3. dx = axdt + bxdw (t) (3.4) a, b (3.4) Brown (geometric Brownian motion) 3 7

4 3 X - 5 5 t 3.: logistic (σ =.,.) 4 3 X - 5 5 t 3.3: logistic (σ =.5) 4 3 X - 5 5 t 3.4: logistic (σ =.) 3 8

4 3 X - 5 5 t 3.5: logistic (σ =.5) 4 3 X - 5 5 t 3.6: logistic (σ =.) X( )=X (3.4) ( X(t) =X exp (a ) b )(t )+b(w(t) W ( )) (3.5) Runge-Kutta 3. Euler (Euler-Maruyama scheme, EM scheme) Gisiro Maruyama, Continuous Markov processes and stochastic equations, Rend. Circ. Mat. Palermo (), 4 (955), 48 9 3 9

3.. EM (3.) 3.. Riemann (3.7) λ = EM {t n } (t n = + nh, T = t N ): h [t n,t n+ ] X n X n+ X n+ = X n + f(t n, X n )h + g(t n, X n ) W n (3.6) h = t n+ t n : g(t, x) EM (3.6) Euler Euler Wiener Wiener 3.. EM 3.3 (EM ) Brown 3. a = b = { dx(t) =X dt + X dw (t), t [,.], (3.7) X() =. EM (3.5) ( ) X(t) =exp t + W (t) (3.8) h = 3 EM T = 3.7 3.. (strong approximation) (pathwise approximation): (weak approximation): 3. X n α h h K e(h) =E( X(T ) X N ) Kh α (3.9) 3

.8.6.4. X.8.6.4...4.6.8 t 3.7: EM e(h): 3. X n β h h ϕ K E(ϕ(X(T ))) E(ϕ(X N )) Kh β (3.) 3..3 EM (3.) 3.. -Taylor (3.) X(t) =X( )+ f(s, X(s))ds + f(s, X),g(s, X) 3 g(s, X(s))dW (s) (3.)

(3.) f(s, X(s)) g(s, X(s)) (3.) f(s, X(s)) = f(,x( )) + g(s, X(s)) = g(,x( )) + (3.) X( )+f(,x( )) [L f f](r, X(r)) dr + [L g f](r, X(r)) dw (r), [L f g](r, X(r)) dr + [L g g](r, X(r)) dw (r) ds + g(,x( )) dw (s) + [L f f](r, X(r)) dr ds + [L g f](r, X(r)) dw (r)ds (3.) + [L f g](r, X(r)) dr dw (s)+ [L g g](r, X(r)) dw (r)dw (s) R X(t) X(t) X(t) =X( )+f(x( )) t t = + h ds + g(x( )) dw (s) X(t )=X( )+f(x( ))h + g(x( )){W (t ) W ( )} {W (t ) W ( )} W EM R E( R )=O(h ) + h, +h,..., + Nh E( X(T ) X N ) Kh (3.3) EM / -Taylor EM (3.) L g g L g g(s, X(s)) = L g g(,x( )) + (3.) X( )+f(,x( )) [L f L g g](r, X(r)) dr + ds + g(,x( )) +[L g g](,x( )) dw (r)dw(s)+r 3 [L g L g g](r, X(r)) dw (r) dw (s) (3.4)

R R = [L f f](r, X(r)) dr ds + + [L f g](r, X(r)) dr dw (s)+ [L g f](r, X(r)) dw (r)ds r [L f L g g](z, X(z)) dz dw (r)dw (s) R r + [L g L g g](z, X(z)) dw (z)dw(r)dw(s) E( R )=O(h 3 ) (3.5) (3.4) EM EM [L g g](,x( )) dw (r)dw (s) (3.6) (3.6) [ ] g x g (,X( )) (W (t) W ()) (t ) (3.7) G.N. Milstein Milstein [ ] g X n+ = X n + f(t n, X n )h + g(t n, X n ) W n + x g (t n, X n ) ( W n) h (3.8) E( X(T ) X N ) Kh (3.9) Milstein e(h) (3.7) EM Milstein (3.7) ( ) X(t) =exp t + W (t) (3.3) Wiener W (t) 3 3

h 3 4 5 EM.7 5.8 3.67 Milstein 4.77.44 6.86 3.: 3.. (3.3) W (t) Wiener W (N) (t) ( ) X (N) (t) =exp t + W (N)(t) (3.3) (realized exact solution) E( X(T ) Y N ) E((X(T ) Y N ) ) error = M M (X(N) i (t) Xi N ) (3.3) i= X(N) i (t), Xi N : i 3.: h = 3, 4, 5 T = EM Milstein Milstein EM 3.8: log h log (error) EM.4, Milstein.7 3..4 -Taylor 3. EM X n+ = X n + f(t n, X n )h + g(t n, X n ) W n 3 4

.5 Euler Milstein -.5 log error - -.5 - -.5-5 -4-3 log h 3.8: -Taylor Taylor [ ] g X n+ = X n + f(t n, X n )h + g(t n, X n ) W n + x g (t n, X n ) ( W n) h [ ] [ f f + x g (t n, X n ) Z n + x f + ] f x g (t n, X n ) h [ g + x f + ] g x g (t n, X n ){ W n h Z n } (3.33) Z n Z n = n+ t n t n dw (r)ds (3.34) Gauss W n E( W n )=E( Z n )=, E(( W n ) )=h, E(( Z n ) )= h3 3, E( W n Z n )= h (3.35) Wiener W n ξ n W n = ξ n h (3.35) Z n ξ n ξ n Z n = h 3 ( ξ n + 3 ξn ) (3.36) 3 5

t = t n µ N µ = N k= X n,k N: X n,k : t = t n k µ M M (batch) j µ j ˆµ ˆσ µ j = N N X n,k,j, k= j =,,...,M ˆµ = M M j= µ j, ˆσ = M M (µ j ˆµ) j= M Student t ( α)% µ ( ) ˆσ ˆσ ˆµ t α,m M, ˆµ + t α,m M t α,m 3.4 ( ) { dx(t) =X dt + X dw (t), t [,.], (3.37) X() =. E(X(t)) = e t h = 3 T = M = N = 9%.9,9 =.73 EM 3.9 Taylor 3. EM Taylor 3 6

3.5 E(X).5.5..4.6.8 t 3.9: EM 3.5 E(X).5.5..4.6.8 t 3.: 3 7

EM Wiener W n Ŵn E( Ŵn) =E(( Ŵn) 3 )=, E(( Ŵn) )=h. (3.38) (two-point distributed random variable) P ( Ŵn = ± h)= (3.39) Ŵn = h(u n /) (3.4) U n [, ) (simplified scheme) X n+ = X n + f(t n, X n )h + g(t n, X n ) Ŵn (3.4) Taylor (3.33) X n+ = X n + f(t n, X n )h + g(t n, X n ) Ŵn + [ f + ] (t n, X n ) h Ŵn x g [ g + x f + g x g ] + [ ] g x g (t n, X n ) ( Ŵn) h [ f x f + ] f x g (t n, X n ) h (t n, X n ) h Ŵn Ŵn (3.4) E( Ŵn) =E(( Ŵn) 3 )=E(( Ŵn) 5 )=, E(( Ŵn) )=h, E(( Ŵn) 4 )=3h. (3.43) Ŵn (three-point distributed random variable) P ( Ŵn = ± 3h) = 6, P( Ŵn =)= 3 (3.44) 3.3.. SDEs 3. 4. 3 8