, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

Similar documents
- II

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

body.dvi


x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

i

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

³ÎΨÏÀ

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

II 2 II

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%


1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

no35.dvi

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

Chap11.dvi

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

II ( : )

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s


(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

基礎数学I

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2


x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

応用数学特論.dvi

I ( ) ( ) (1) C z = a ρ. f(z) dz = C = = (z a) n dz C n= p 2π (ρe iθ ) n ρie iθ dθ 0 n= p { 2πiA 1 n = 1 0 n 1 (2) C f(z) n.. n f(z)dz = 2πi Re

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

untitled

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

ÄêÀÑʬ¤ÎÄêµÁ¤Ë¤Ä¤¤¤Æ

1

( ) a, b c a 2 + b 2 = c : 2 2 = p q, p, q 2q 2 = p 2. p 2 p q 2 p, q (QED)

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

*3 i 9 (1,) i (i,) (1,) 9 (i,) i i 2 1 ( 1, ) (1,) 18 2 i, 2 i i r 3r + 4i 1 i 1 i *4 1 i 9 i 1 1 i i 3 9 +


D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

b n c n d n d n = f() d (n =, ±, ±, ) () πi ( a) n+ () () = a R a f() = a k Γ ( < k < R) Γ f() Γ ζ R ζ k a Γ f() = f(ζ) πi ζ dζ f(ζ) dζ (3) πi Γ ζ (3)


[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

Acrobat Distiller, Job 128

mugensho.dvi


A

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

1 I

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

i 18 2H 2 + O 2 2H 2 + ( ) 3K

2000年度『数学展望 I』講義録

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

DVIOUT

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

統計学のポイント整理

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

高等学校学習指導要領

高等学校学習指導要領

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

04.dvi


Transcription:

1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d n(x)) lim dx f n(x) 1

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x) x 1 n n x f n (x) = ε δ (a, b) {f n (x)} (a, b) f(x) x (a, b), ε >, n = n (x, ε), n n, f n (x) f(x) < ε 1.2 1 lim f n (x) = f(x) x n x 2

n n n f n (x) f(x) x (a, b), ε >, n = n (ε), n n, f n (x) f(x) < ε n = n (x, ε) n = n (ε) (a, b) x {f n (x)} f(x) lim f n (x) = f(x), x (a, b), f n (x) f(x), x (a, b) lim f n (x) = f(x), x (a, b), f n (x) f(x), x (a, b) ( 2 (i) (ii) b lim a f n (x) f(x), f n (x) f(x), x (a, b) f n (x)dx = b a ( lim f n (x))dx d dx f n(x) g(x), x (a, b), d f(x) = g(x) dx {f n (x)} f n (x) = x n, x 1 3

lim f n(x) = f(x) = {, x < 1 1, x = 1 1 f(x)dx =. 1 f n (x)dx = [ xn+1 n + 1 ]x=1 x= = 1 n + 1, n 1 lim f n (x)dx = 1 ( lim f n (x))dx lim f n (x) = f(x) lim x n = < ε x n ϵ x 1 x n ε n log x log ε n log ε log x n ε x 3 (i) b f n (x) < (, x (a, b), a ( f n (x))dx = b a f n (x)dx 4

(ii) d f n (x) <, dx f n(x) < (, x (a, b), d dx ( f n (x)) = d dx f n(x) 4 (i) (ii) f n (x) < f n (x) < f n (x) < (, x (a, b), f n (x) < (, x (a, b) 5 (a, b) x f n (x) M n M n < 5

f n (x) < f n (x) < (, x (a, b) 6 (i)f n (x), n = 1,..., (a, b) f n (x) f(x), x (a, b) f(x) (a, b) (ii)f n (x), n = 1,..., (a, b) f n(x) < (, x (a, b) f(x) = f n(x) (a, b) f n (x) = 1, n = 1, 2,.. (x + 1) n (i) f(x) = {, < x 1 1, x = (ii) (, 1) (iii) [1, 2] (i) (ii) 1 (x+1) n < ε n > log 1 ε log(1 + x) x lim x + log 1 ε log(1 + x) = 6

x n (iii)1 x 2 2 (x + 1) 3 1 (x+1) n 2 n (x + 1) n 3 n 1 2 n 1 (x + 1) n 1 3 n ε n 1 2 n ε ε x (1 x 2) lim f n (x) = 1.3 1.3.1 f n(x) f n (x) f n (x) = c n x n c nx n x = 7 n= c nx n x x x x n= c nx n n= c nx n n= c nx n x R x < R x n= c nx n x > R x n= c nx n R 7

8 f(x) = n= c nx n c ρ = lim n+1 c n R R = 1 ρ ( ρ = lim cn 9 f(x) = n= c nx n f (p) (x) = n(n 1)...(n p + 1)c n x n p, (p = 1, 2,...)...( ) n=p c p = f (p) (), (p = 1, 2,...) p! ( 1. ( ) 2. n= c nx n n= c n(x a) n a 1.3.2 1 [a, b] y = f(x) (n 1) (n 1) (a, b) n f(b) = f(a)+ (b a) f (a)+...+ 1! (b a)k f (k) (a)+...+ k! 8 (b a)n 1 f (n 1) (a)+r n (n 1)!

R n R n = (b a)n f (n) (c), a < c < b n! b = x f(x) = f(a) + R n = (x a) f (a) +... + 1! (x a)n f (n) (c), a < c < x n! a = (x a)k f (k) (a) +... k! (x a)n 1 f (n 1) (a) + R n, (n 1)! f(x) = f() + x 1! f () +... + xk k! f (k) () +... + xn 1 (n 1)! f (n 1) () + R n, R n = xn n! f (n) (c), < c < x ( R n c c = a + θ(b a) = (1 θ)a + θb, c = a + θ (x a) = (1 θ )a + θ x, c = θ x, < θ, θ, θ < 1 11 R n lim R n = f(x) = f(a) + (x a) f (a) +... + 1! (x a)n f n (a) +... n! f(x) = f() + x 1! f () +... + xn n! f n () +... 9

12 x lim x n n! = f (n) (c) f(x) = 1 1 x x < 1 n= xn x < 1 f(x) = 1 1 x x < 1 1 1 x = 1 + x + x2 +... + x n +... f(x) = e x f(x) = e x f (x) = e x, f (k) (x) = e x, f (k) () = 1, k =, 1,... f (n) (c) = e c e c M M x x N x x N x x lim R n = e x = 1 + x 1! +... + xn n! +... f(x) = sin x f(x) = sin x f (x) = cos x = sin(x + π 2 ), f (k) (x) = sin(x + kπ 2 ), k =, 1,... 1

f (2k+1) () = ( 1) k, f (2k) () =, k =, 1,... f (n) (c) = sin(c + nπ 2 ) x x f (n) (c) sin(c + nπ 2 ) 1 lim R n = sin x = x x3 3! + x5 5!... + ( 1)k x 2k+1 (2k + 1)! +... f(x) = cos x f(x) = cos x = sin(x + π 2 ) f (k) (x) = sin(x + kπ 2 + π ), k =, 1,... 2 f (2k) () = ( 1) k, f (2k+1) () =, k =, 1,... f (n) (c) = sin(c + nπ 2 + π 2 ) f (n) (c) 1 x lim R n = x cos x = 1 x2 2! + x4 x2k... + ( 1)k 4! (2k)! +... 11

f(x) = log(1 + x) f(x) = log(x + 1) f (x) = 1 = (x + 1) 1 (x + 1) f (k) k 1 (k 1)! (x) = ( 1) (x + 1), f (k) () = ( 1) k 1 (k 1)!, k = 1,... k R n = xn n! f (n) n 1 xn (c) = ( 1) n ( 1 1 + c )n, c x 1 < x 1 1 < x 1 lim R n = log(x + 1) = x x2 2 + x3 xn... + ( 1)n 1 3 n +... (x + 1) m f(x) = (x + 1) m m m (x + 1) m 2 m f(x) (m + 1) f(x) = (x + 1) m 1 < x 1 (x+1) m = 1+ m 1! 1) x+m(m x 2 m(m 1)(m 2)...(m n + 1) +...+ x n +... 2! n! 1. x n n=, 2. n! n= n!xn, 3. x n n=, 4. n 2 n= 12 x n n 3 +1,

5. n= (n!) 2 x n 6. xn (2n)! n= ( 1)n 7. n! n= xn2 1. cosh x = 1 2 (ex + e x )2. log(x + 1 + x 2 )3. log(1 x + x 2 )4. sin 3 x, 5.a x 6. log(1 x)7. sin 2 x8. log( 1+x 1 x ) 2 2.1 f(x) x T > f(x + T ) = f(x) f(x) T x n n= c nx n (T = 2π 13 [, π] f(x) f(x) = (a n cos nx + b n sin nx) n= a n, b n a n = 1 π b n = 1 π a = 1 2π f(x) cos nxdx, n = 1, 2,... f(x) sin nxdx, n =, 1, 2,... f(x)dx 13

sin mx cos nxdx =, m, n =, 1,... cos mx cos nxdx =, m n sin mx sin nxdx =, m n cos 2 nxdx = π, n = 1,... sin 2 nxdx = π, n = 1,... 2.2 f(x) 2π [, π] f(x), [, π] f(x) {x i } n i=1 x i f(x i +) = lim x xi + f(x) f(x i ) = lim x xi f(x) f(x i + ) = f(x i ) x i f(x) [, π] f(x) a n, b n a n = 1 π b n = 1 π a = 1 2π f(x) cos nxdx, n = 1,... f(x) sin nxdx, n =, 1,... f(x)dx (a n cos nx + b n sin nx) n= f(x) (a n cos nx + b n sin nx) n= 14

14 [, π] f(x) a n, b n n M a n, b n M 15 ( [, π] f(x) a n, b n a n, b n, (n ) f(x) f(x) f (x) f(x) resp. f(x) = f( x) resp.f(x) = f( x)) n b n = (resp.a n = ) resp. (resp. { { 1, x π x, x π f(x) = f(x) =, x 1, x sin x, x π f(x) = x, ( x π) f(x) =, x f(x) = x 2, ( x π) f(x) = sin x, ( x π) 2 [, π] f(x) [, π] 2π [, π] (i) π [, ] f(x) = f(x + π), x { (ii) [, ] f(x) = f( x), x 15

(iii) [, ] f(x) = f( x), x f(x) = x( x π) π [, ] a n = 2 π x cos 2nxdx = 2 π {[x 1 sin 2nx]x=π x= 1 2n 2n sin 2nxdx} = 1 [cos 2n 2 2nx]x=π x= =, (n ) π a = 1 π b n = 2 π xdx = π 2, x sin 2nxdx = 2 π { [x 1 cos 2nx]x=π x= + 1 cos 2nxdx} 2n 2n = 2 π { π 1 cos 2nπ + [sin 2nx]x=π 2n 4n2 x=} = 1, (n ) n π 2 1 sin 2nx n [, ] b n =, a n = 2 π 16 x cos nxdx

= 2 π {[x 1 sin nx]x=π x= 1 n n sin nxdx} = 2 [cos n 2 nx]x=π x= = 2 π n 2 π (( 1)n 1), (n ), a = 1 π xdx = π 2 π 2 + 2 n 2 π (( 1)n 1) cos nx [, ] a n =, = 2 π { [x 1 n b n = 2 π x sin nxdx cos nx]x=π x= + 1 n cos nxdx} = 2 π { n cos nπ + 1 [sin nx]x=π n2 x=} = 2 n ( 1)n+1, (n ) 2 n ( 1)n+1 sin nx 16 N A n, B n N (A n cos nx + B n sin nx) 17

,. (f(x) N (A n cos nx + B n sin nx)) 2 dx A n = a n, B n = b n 17 D n (x) = 1 + cos x + cos 2x +... + cos nx 2 (i)d n (x) = sin(n + 1)x 2 2 sin x x = 2 (ii) 1 π D n (x)dx = 1 (iii) f(x) [, π] 2π 1 π lim f(y)d n (x y)dy = 1 {f(x + ) + f(x )} π 2 f(x) 1 lim π f(y)d n (x y)dy = f(x) ( {D n (x)} n δ(x) sin(n+ D n (x) (i) D n () = lim 1 2 )x x = n + 1 2 sin x 2 2 (1)δ() = lim D n () = lim (n + 1 2 ) = 18

x lim D n (x) (ii) (2) δ(x)dx = π D n (x) (iii) (3) 1 π f(y)δ(x y)dy = f(x) δ(x) π (iii) 18 f(x) [, π] 2π 1 2 {f(x + ) + f(x )} = (a n cos nx + b n sin nx) n= f(x) f(x) = (a n cos nx + b n sin nx) n= ( f(x) n= (a n cos nx + b n sin nx) f(x) 19 1 π f(x) 2 dx a2 π 2 + (a 2 n + b 2 n) ( f(x) ( a 2, 1 2 (a2 n + b 2 n) 19