untitled

Similar documents
Part () () Γ Part ,

「スウェーデン企業におけるワーク・ライフ・バランス調査 」報告書

1 Tokyo Daily Rainfall (mm) Days (mm)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

meiji_resume_1.PDF

TOP URL 1

201711grade1ouyou.pdf

JMP V4 による生存時間分析

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re


Z: Q: R: C: sin 6 5 ζ a, b


2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

chap9.dvi


プログラム

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

( ) Loewner SLE 13 February

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,


chap10.dvi

untitled

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

: , 2.0, 3.0, 2.0, (%) ( 2.

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

構造と連続体の力学基礎

PDF

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

gr09.dvi

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

waseda2010a-jukaiki1-main.dvi

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

keisoku01.dvi

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

ohpmain.dvi

seminar0220a.dvi

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

Untitled

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

10:30 12:00 P.G. vs vs vs 2

量子力学 問題

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

6.1 (P (P (P (P (P (P (, P (, P.

( ) ,

Kullback-Leibler

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i =


6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

tokei01.dvi

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

Mott散乱によるParity対称性の破れを検証

03.Œk’ì

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

LLG-R8.Nisus.pdf

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

6.1 (P (P (P (P (P (P (, P (, P.101

本文/目次(裏白)

TOP URL 1

151021slide.dvi

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

30

第5章 偏微分方程式の境界値問題


Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,


note1.dvi


(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

研究シリーズ第40号

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

TOP URL 1


v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

Transcription:

18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6.

LCC (1) (2) 2

10mm 1020 14 12 10 8 6 4 40,50,60 2 0

1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1

1) Vol.42No.5pp.29-322004.5. 2) 2003.4. 3) 2005.11.1. 2

LCC 1 3

7 1 2 3 4 5 6 7 1 2 3 4 5 4

6 7 1) 6 JCOSSAR 2007pp.57-642007.6. 5

1) 3.1 2) RC 3),4) (A) 5)(B) (A)(B) 3.1 3.1 (A) (B),,,, 6

3.1 (B) 3.2 6) 7)14) 15) 7

X(t+1) t X(t) RC 9) H9 H13 25 10)14) a,b,c,d,e RC MCI 16)17) 1) pp.94-962005.11.1. 2) 2002. 8

3) No.767-64pp. 35-462004. 4) No.781-66pp.157-1702005. 5) 2003.3. 6) pp.222006.12. 7) JCOSSAR'95 pp.341-348,1995. 8) RC Vol.47App.277-2842001.3. 9) RC 41 4 pp.3-372002-12. 10) RC Vol.7pp. 1141-11482004. 11) No.744-61pp.29-382003.10. 12) BMS LCC Vol.11pp.111-1222004-12. 13) No.801-73pp.69-822005-10. 14) No.801-73pp.83-962005.10. 15) Hiroshi IIZUKAA STATISTICAL STUDY ON LIFE TIME OF BRIDGESProc. of JSCENo.392-9Vol.5No.1pp.51-60April 1988. 16) Vol. 63No. 1pp.1-152007. 17) 61 2006.9. 9

10

11

12

13

A B C D E 14

15

16

4.3.1 17

LCC LCC 18

n0,1,2,n=0 n=n N+1 X n 5 Bridge Health Index BHI 5 5 3 2 MCI MCI 5 5.2.1 n n X n 5.2.1 5.2.2 19

5.2.2 RC n=0,1,2, X 0,X 1, 1 2 n-1 X n-1 =i X n-1 X n-1 =i n X n =j p ij p ij n-1 X n-1 =i 20

p ij =P(X n =j X n-1 =i),i,js (5.2.1) i j p ij K n-1 n KK 5.2.1 1 5.2.2 5.2.3 1 5.2.4 5.2.3 1 i 5.2.2 5.2.4 5.2.5 5.2.5 1 i j 5.2.5 5.2.5 21

n X n =i n=0 n=n' n' X n' =i p in' =P[X n' =i] i K n' K p(n)=p 1n,p 2n,,p Kn n n+1 X n+1 =i n X n i n+1 X n+1 j p ij =P(X n+1 =j X n =i),i,js (5.2.3) 22

n+1 X n+1 =j n X n =i p in n X n =i n+1 X n+1 =j p ij p in jn+1 =P(X n =i)p(x n+1 =j X n =i)=p in p ij (5.2.4) p jn+1=p(x n+1 =j)=p in p ij (5.2.5) p 1n+1,p 2n+1,,p Kn+1 = (5.2.6) P(n+1)=p(n)P (5.2.7) n P(n+1)=p(n)P=[p(n-1)P}P ==p(0)[p} n+1 (5.2.8) p(0) P P n X n =i m j p (m) ij p (m) ij i j m p (m) ij (5.2.9) P (m) m m P (m) P m = P (m-1) P= P (m-2) P (2) == PP (m-1) (5.2.10) Chapman-Kolmogorov Chapman-Kolmogorov (5.2.11) 23

24

25

D X Z T = 1 0 12 C 0 2 0 25 RC 0 3 1 36 C 1 4 0 5.5. RC 1 5 1 48 C 0 6 0 17 C 0 7 0 30 C 1 8 1 5.5. C 0 9 0 46 RC 1 10 1 53 C 1 N ( i = 1, L, N )i J X i = ( X i1, L, X ij) X ij j T = 0 i K S Y i( S) = ( Yi 1( S), L, YiK( S)) Yik ( S) k 26

M Z = ( Z 1, L, Z ) Z im m i i im X = ( X 1, L, X ) Z = ( Z 1, L, Z ) i i ij i i im ii ( = 1, K, N) ρ i α ( ) ρ = exp X α + Z β, i = 1, K, N (5.3.1) i i i = ( α1, L, α J ) J = ( 1, L, M ) M β β β N i T T T T (Right Censoring) 1970 1980 1990 2000 27

0 10 20 30 N T = ( T %, L, 1 T % N) i c i c= ( c1, L, c N ) i T i c i T % i i = 1, L, N if, T% if, T% i i > c i c i (5.3.2) T = 0 c i T = 0 T% i( ci ) Ti = min{ T% i, ci} (5.3.3) i D i D i = 1{ T i = T% i } (5.3.4) i D i 1 if, Ti = T% i( lifetime) = 0 if, Ti = ci( Censoring) (5.3.5) i t λ() t 28

Pr( t Ti < t+ t t Ti) λ() t = lim t 0 t (5.3.6) dlog S( t) / dt i T i t St () St () = Pr( t< T i ) (5.3.7) Ft () = 1 St () f () t f () t = ds() t / dt dlog S( t) ds( t) / dt f( t) λ() t = = = (5.3.8) dt S() t S() t f () t = λ() t S() t Λ() t t () t λ( u) du Λ = (5.3.9) 0 St ( ) = exp( Λ ( t)) (5.3.10) v( < t) (Truncation) v Sv () St ()/ Sv ( ), f () t / S( v) f () t / S( v) f() t λ() t = = St ()/ Sv ( ) St () (5.3.11) i T % i f ( T% i) = λ( T% i)exp{ Λ( T% i)} (5.3.12) c i D i = 1Ti = T% i T i f ( T) = λ( T)exp{ Λ ( T)} (5.3.13) i i i D i = 0 T i = c i c i ST ( ) = exp{ Λ ( T)} (5.3.14) i D i = 1 D i = 0 i i = 1, L, N i D l = λ( T) i exp{ Λ( T)} (5.3.15) i i i i 29

N N Di L= λ( Ti) exp{ Λ( Ti)} (5.3.16) i= 1 λ() t St () u τ MRL( u) Mean Residual Life MRL( u) = E( τ u u < τ ) (5.3.17) τ u τ τ u u ( t u) f( t) dt u E( τ u u< τ) = (5.3.18) Su ( ) f () t = ds() t / dt [ t ust] ( St ( )) ( t u) f( t) dt = ( t u) [ ds( t) / dt] dt (5.3.19) u u = ( ) ( ) u dt ( t ust ) () ( t ust ) () Stdt () u t t= u u = + (5.3.20) = Stdt () (5.3.21) u t St () u () u MRL( u) = Stdt (5.3.22) Su ( ) t t λ() t t St () 30

ρ > 0, t 0 t λ() t ρ t St () exp ( ρt) t λ() t θ θ, ρ > 0,t ρ t t St () ρ θ t θ κ, ρ > 0, t 0 t λ() t ρ exp( κ t) t St () ρ exp 1 exp t κ { ( κ )} 31

κ, ρ > 0, t 0 t λ() t κρt 1+ ρt κ 1 κ t St () 1 1+ ρt κ 32

κ, ρ > 0, t 0 t λ() t t St () κρ 1 t κ exp ( ρt κ ) T Weibull( ρ, κ) ρ > κ > 0 t 0 λ() t ρκ 1 = t κ (5.3.23) κ > 1 κ = 1 κ < 1 33

Λ () t = ρt κ (5.3.24) St ( ) = exp{ Λ ( t)} = exp{ ρt κ } (5.3.25) T κ q q/ κ q ET [ ] = ρ Γ (1 + q/ κ) ET = ρ Γ + / κ (5.3.26) 1/ κ [ ] (1 1 ) Var[ T ] = ρ Γ (1 + 2 / κ) Γ (1 + 1 / κ) (5.3.27) 2/ κ 2 c > 0 T Weibull( ρ, κ ) ct Weibull( ρc κ, κ) T c Weibull( ρ, κ/ c) M Weibull( ρ, κ ) min{ T, L, T M } Weibull( M ρ, κ ) (minimum 1 stable) N 1 D κ i κ L= ρκti ρt i i= 1 exp{ } (5.3.28) N i= 1 log L Dilog( ) Di( 1) logti T κ = ρκ + κ ρ i (5.3.29) κ ρ 34

( 8 t 3.98 ) St ( ) = exp 3.036 10 (25%-quantile) (75%-quantile) Su ( ) = exp{ ρu κ } κ exp{ ρt } dt u MRL( u) = (5.3.30) κ exp{ ρu } κ IMRL ( u, ρκ, ) = exp{ ρt } dtκ > 0 y = ρt κ 1 κ dt = t dy/ ( ρκ ) ρ > 0, κ > 0 t y( = ρt κ ) t 1 κ 1 1 / κ 1 / κ 1 u 1 κ (,, ) exp{ } t IMRL u ρκ = y dy (5.3.31) κ ρu ρκ = ρ y 11 / κ (,, ) ρ exp{ } 1/ κ 1 IMRL u ρκ = y y dy κ ρκ (5.3.32) ρu Γ ( ν, z) 1 ( z) exp{ w} w ν ν dw ( ν 0 z 0) z Γ, =, >, > (5.3.33) (,, ) ρ 1 IMRL u ρκ = Γ, u (5.3.34) 1/ κ κ ρ κ κ 35

MRL( u) = ρ 1 / 1 κ κ Γ, ρu κ κ κ exp( ρu ) (5.3.35) u = 0 1/ κ ρ 1 0 Γ, / 1 κ κ κ ρ 1 MRL(0) = = Γ, 0 (5.3.36) exp(0) κ κ MRL(0) u 36

Y i n Y i µ i µ i > 0 x i k xi = ( xi 1,..., x ik) x i Y i y exp( µ ) i i µ i Pr( Yi = yi µ i) = µ i > 0, yi = 0,1, 2,... (5.4.1) y! i i µ i k µ = exp( x β ) (5.4.2) i β k i 37

[ ] =, [ ] E y x µ i i i Var y x = µ (5.4.3) i i i n n y exp( µ ) i i µ i L = (5.4.4) y! i= 1 n µ i y i n n y exp( µ ) i i µ i log L = log i= 1 yi! n i [ µ i yilog( µ i) log( yi!) ] [ exp( x iβ) yix iβ log( yi!) ] (5.4.5) = + = + i= 1 i= 1 n β ˆβ [ ] ˆ E y x = exp( x β ), i = 1,..., n (5.4.6) i i i [ x ] E y i x ij i = ˆ β exp( x ˆ β), i= 1,..., n; j = 1,..., k j i (5.4.7) 38

(5.4.6) j x ij 39

52117 52 5.5.1 40

1) 1 2 3 1993, 1998, 20035, 4, 45, 4, 5 4, 4, 5 2 10 1 OK 5, 4, 3, 2, 1 2) 3) i(i=1,,k) S={1,,K} t (t)=i t+1 RC (t+1)=j Pr ob [ ( t + 1) = j( t) = i] = (5.5.1) ij π11 π1k Π = M O M (5.5.2) 0 π KK K j = 1 π = 1 ij RC ς f ς ) F ς ) i i RC i y i+1 λ i ( y i ) y i i ( i i F ~ ( ) i y i i ( i i 41

f ( ~ ) i yi yi λ i( yi ) yi = (5.5.3) Fi ( yi) λ i ( y i ) y i i [ y i, y i + y i ] i+1 RC y i θi > 0( i = 1,, K) λ i( yi ) = θi (5.5.4) RC i y F ~ ( ) i i y i ~ F ( y ) = exp( y ) (5.5.5) i i θ i i τ A i y A i y A ~ z ( 0) i F ( y + z ζ y ) ~ F ( y + z ζ y ) i A i i i A i A i i A = Pr ob{ ζ y + z ζ y } (5.5.6) i A i i F ~ ( ) A i y i ~ Fi ( ya + zi) exp{ θ i( ya + zi)} ~ = = exp( θ izi) (5.5.7) Fi ( ya) exp{ θ i ya} y A i y i ω Pr ob[ ( y ) i ( y ) = i] = exp( Z) B ω A θ = (5.5.8) i = y Z B A + Z Pr ob[ ω( y ) = iω( y ) i] B A = π ii π ii θ i Z y A, yb 2) y A y B i j π π = Pr ob[ h( y ) = j h( y ) i] ij B A = ii j m = K = i m= i θ θ θ k 1 j 1 m θm exp( θ kz) θ θ k m= k m+ 1 k (5.5.9) 42

K 1 π ik = 1 π ij (5.5.10) j = i π ik 5.5.2 5.5.1 5.5.3 43

5.5.4 H0n =0 n H1n0 t- 1 t t-t t->t 0.025 n A n305% t 1.96 2.0 4) 5.5.5 50 5.5.2 44

5.5.2 1 7 7 8 5.5.5 17 3 4 2) 4.62% 1 7 7 5.5.2 18 8 5.5.6 45

5.5.3 5.5.7 5.5.8 t- 5.5.9 50 5.5.4 46

5.5.4 5.5.10 47

5.5.5 5.5.11 5.5.12 t- 48

5.5.13 50 5.5.6 5.5.6 49

CLEN 0.175 0.150 0.125 0.100 0.075 0.050 0.025-5 0 5 10 15 20 25 30 35 50

CWID 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0 2 4 6 8 10 12 14 16 18 51

HIRW 0.025 0.020 0.015 0.010 0.005-20 0 20 40 60 80 100 120 140 160 180 52

53

54

55

56

57

58

59

60

61

8 7 6 5 4 3 2 y = 0.020x + 2.597 R² = 0.005 8 7 6 5 4 3 2 y = 0.002x + 2.055 R² = 9E-05 1 0 0 10 20 30 40 10.2mm 1 0 0 10 20 30 40 10.2mm 62

0.150 0.125 0.100 0.075 0.050 0.025 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 63

812mm 0.7mm 1mm 2mm 5.5.31 64

good good 65

66

67

68

69

70

71

10 102020 15 0.5 0.4,0.6 510 50100 72

73

74

75

76

77

78

79 0.688 0.486 0.765 0.680 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 good 23.20 27.15 20.87 23.37 0 5 10 15 20 25 30 BIC good 0.848 0.695 0.868 0.854 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 good 17.42 22.97 16.27 17.09 0 5 10 15 20 25 BIC good

80 0.698 0.504 0.757 0.695 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 good 22.91 26.87 21.13 22.98 0 5 10 15 20 25 30 BIC good 0.893 0.727 0.910 0.901 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 good 14.57 22.09 13.14 13.93 0 5 10 15 20 25 BIC good

81 0.771 0.561 0.827 0.770 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 good 20.72 25.88 18.42 20.72 0 5 10 15 20 25 30 BIC good 0.905 0.758 0.914 0.913 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 good 13.62 21.12 12.79 12.95 0 5 10 15 20 25 BIC good BIC BIC BIC

14 12 10 8 6 4 2 0 40,50,60 14 12 10 8 6 4 2 0 40,50,60 14 12 10 8 6 4 2 40,50,60 0 82

14 12 10 8 6 4 2 40,50,60 0 14 12 10 8 6 4 2 40,50,60 0 14 12 10 8 6 4 2 40,50,60 0 83

yi y% i =, i= 1,..., n Median( y,..., y ) 1 YDAN 0.12 n 0.10 0.08 0.06 0.04 0.02 0 10 20 30 40 50 60 70 80 84

YDEP 0.25 0.20 0.15 0.10 0.05-2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 0.225 LEVEL 0.200 0.175 0.150 0.125 0.100 0.075 0.050 0.025-12 -11-10 -9-8 -7-6 -5-4 -3-2 -1 0 1 2 3 4 µ Dan i Dan µ = exp( β + x β ), i= 1,..., n i L 0 i 1 x L i β 0 β 1 85

β 0 β 1 exp(2.10525) = 8.20 µ Pit i µ = exp( β + x β + x β ), i= 1,..., n Pit L Dan i 0 i 1 i 2 x Dan i β 2 x L i β 0 β 1 β 0 β 1 β 2 exp(1.31622) = 3.72 86

0.35 0.3 0.25 0.2 0.15 0.1 0.05 0-10m -8m -5m -3m -2.5m -1.7m -1m 0m 1.1m 1.8m 1m 1m 16 14 12 10 8 6 4 2 0-10m -8m -5m -3m -2.5m -1.7m -1m 0m 1.1m 1.8m 6(24mm^2) 20 (80mm^2 ) 87

24mm^2 6 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 6 24mm^2-1m 10 15 20 80mm^2 88

20 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 20 80mm^2 10 15 20 89

0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109 113 117 121 125 0.5 1 4mm^2 0.5 0.20.50.1mm 90

50% 600800 Tohman-Bain 1 5, 4, 3, 2, 1 5.4.8 t 2.04 t 2.0 (1) c = s r r (1) 91

c s r 5.5.1 92

5.5.3 5.5.5 93

94

10 1020 20 10 1020 20 10.2mm 10.2mm 14 40,50,60 12 10 8 6 4 2 0 14 14 12 10 8 6 4 2 0 40,50,60 14 40,50,60 40,50,60 12 12 10 10 8 8 6 6 4 4 2 2 0 0 14 40,50,60 12 10 8 6 4 2 0 14 40,50,60 12 10 8 6 4 2 0 10 5 95

2 2 1H.C. Shin and S. Madanat : Development of A Stochastic Model of Pavement Distress Initiation, JSCE, No.744/IV-61, pp.61-67, 2003. 2 FVol.62, No.2, pp.240-257, 2006. 3D.R. Cox and D. Oakes : Analysis of Survival Data, Monographs on Statistics and Applied Probability 21, Chapman & Hall/CRC, 1998. 4E.T. Lee and J.W. Wang : Statistical Methods for Survival Data Analysis, John Wiley & Sons, 2003. 5) Cox 2001. 6) 2004. 7 :,, 1990. 8W.N. Venables and B.D. Ripley : Modern Applied Statistics with S-PLUS 3rd edition, Chapter12, Springer-Verlag, 1999 ; : S-PLUS,, 2001. 1C. Cameron and P. Trivedi : Econometric Models Based on Count Data : Comparisions and Applications of Some Estimators, Journal of Applied Econometrics, 1, pp.29-53, 1986. 2T. Yasuno : Activity Analysis on Diary Data, K. Kobayashi et al Eds.: Social Capital and Development Trends in Rural Areas, Chap11, 2005. 3 :,, 1990. 1) http://psa2.kuciv.kyoto-u.ac.jp/bms/index.html 2) 96

No.801-73pp.69-822005-10. 3) Vol.14pp.199-2102005. 4) 12 pp.781995. 97

98 RC

RC 99

100

101

102

103

104

105

106

107

108

109

246.1 0.31 468.5 0.58 86.4 0.11 801.1 1.00 250 200 150 100 50 0 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 110

111 0 50 100 150 200 250 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

112 0 20 40 60 80 100 120 140 160 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 0 5 10 15 20 25 30 35 40 45 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

113 0 10 20 30 40 50 60 70 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 0 20 40 60 80 100 120 140 160 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

114

LCC LCC LCC LCC 1 115

(1) (2) 2 116

117