Similar documents
CVaR

パーキンソン病治療ガイドライン2002

研修コーナー

Dimitrov [2] MPC Dimitrov MPC MPC MPC [14] MPC [7] KKT MPC [14] Rao LDL MPC MCP [5] 2 MPC u k

数学概論I

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

日本内科学会雑誌第102巻第4号

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

陦ィ邏・2

第90回日本感染症学会学術講演会抄録(I)

Ł\”ƒ-2005

untitled

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :


I , : ~/math/functional-analysis/functional-analysis-1.tex

TOP URL 1

量子力学 問題

Q & A Q A p

2000年度『数学展望 I』講義録


AHPを用いた大相撲の新しい番付編成

i


Wide Scanner TWAIN Source ユーザーズガイド

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

プリント

Dynkin Serre Weyl

第3章 非線形計画法の基礎

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


untitled

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

2016.

第121回関東連合産科婦人科学会総会・学術集会 プログラム・抄録

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

…p…^†[…fiflF”¯ Pattern Recognition

第5章 偏微分方程式の境界値問題

薄膜結晶成長の基礎2.dvi



NewsLetter-No2

日歯雑誌(H22・7月号)HP用/p06‐16 クリニカル① 田崎


s s U s L e A = P A l l + dl dε = dl l l

o 2o 3o 3 1. I o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o I 2o 3o 4o 5o 6o 7o 2197/ o 1o 1 1o

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

untitled

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

基礎数学I

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

Jacobi, Stieltjes, Gauss : :

福岡大学人文論叢47-3

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

本文/目次(裏白)

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

ohpr.dvi

meiji_resume_1.PDF

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

inkiso.dvi

JFE.dvi


Lecture 12. Properties of Expanders

untitled

waseda2010a-jukaiki1-main.dvi

( ( 3 ( ( 6 (


A

all.dvi



高知工科大学電子 光システム工学科

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

「産業上利用することができる発明」の審査の運用指針(案)

untitled

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 +

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

/ n (M1) M (M2) n Λ A = {ϕ λ : U λ R n } λ Λ M (atlas) A (a) {U λ } λ Λ M (open covering) U λ M λ Λ U λ = M (b) λ Λ ϕ λ : U λ ϕ λ (U λ ) R n ϕ

直交座標系の回転

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

[I486S] 暗号プロトコル理論

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

numb.dvi

(1) (2) (3) (4) 1

Chap9.dvi

178 5 I 1 ( ) ( ) ( ) ( ) (1) ( 2 )

Mathematical Logic I 12 Contents I Zorn

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

三石貴志.indd

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ


Transcription:

1 n

1 1 2 2 3 3 3.1............................ 3 3.2............................. 6 3.2.1.............. 6 3.2.2................. 7 3.2.3........................... 10 4 11 4.1.......................... 11 4.2.............................. 12 4.2.1 n = 2........................... 13 4.2.2 n = 3........................... 15 4.2.3..................... 19 5 20

1 [1] (Supply Chain Management: SCM) SCM SCM ( ) [2] (Generalized Nash Equilibrium Problem: GNEP) GNEP [3] min x ν θ ν (x ν, x ν ) s.t. x ν X ν (x ν ) } (ν = 1,..., N) (1) N x R n x ν R n ν (ν = 1,..., N) ( x = (x 1,..., x N ) T n = ) N ν=1 n ν ν (ν = 1,..., N) x x ν 1

x ν x = (x ν, x ν ) θ ν ν X ν (x ν ) ν x ν GNEP [3] 1 n (n 2) ( ) ( ) 2 3 4 5 2 D(> 0): h(> 0): l i (> 0): u i ( l i ): p i (> 0): c i (> 0): k i (> 0): K i (> 0): r i (l i r i u i ): λ i (0 λ i 1): ( ) ( ) 1 i (i = 1,..., n) i (i = 1,..., n) i (i = 1,..., n) 1 ( p 1 p 2 p n ) i (i = 1,..., n) 1 i (i = 1,..., n) 1 i (i = 1,..., n) 1 i (i = 1,..., n) ( ) i (i = 1,..., n) ( n i=1 λ i = 1) 2

1: 2: 1 0 i (i = 1,..., n) 1 Q i Q i = λ i D/r i 2 3 n r = (r 1,..., r n ) T λ = (λ 1,..., λ n ) T λ r 3.1 i Q i 0 I i I i = r iq 2 i 2D = λ2 i D 2r i 3

C(r, λ) C(r, λ) = n (p i λ i D + hi i ) = i=1 ( ) n p i λ i D + h λ2 i D = D 2r i i=1 ( ) n p i λ i + hλ2 i 2r i i=1 r C(λ) := C(r, λ) λ = (λ 1,..., λ n) T min λ s.t. ( ) n p i λ i + hλ2 i 2r i=1 i n λ i = 1 i=1 λ i 0 (i = 1,..., n) (2) (2) (2) Karush-Kuhn-Tucker (KKT ) λ L 0 (λ, v, w) = 0 (3) 0 w λ 0 (4) n 1 λ i = 0 (5) i=1 L 0 (λ, v, w) = n i=1 (p iλ i + hλ 2 i /2r i ) + v(1 n i=1 λ i) n i=1 w iλ i, w = (w 1,..., w n ) T a b ab = 0 (3), (4) w i = p i + hλ i r i v 0 (i = 1,..., n) λ i r i h (v p i) (i = 1,..., n) 4

(4) λ i ( λ i = max 0, r ) i h (v p i) (i = 1,..., n) f i (v) = max(0, r i (v p i )/h) (5) λ i n i=1 f i(v) = 1 v λ i = max(0, r i (v p i )/h) (i = 1,..., n) p 1 p 2 p n [4] λ = r 1 (v n p 1 ) h r 2 (v n p 2 ) ḥ. r n (v n p n ) h r 1 (v n 1 p 1 ) ḥ. r n 1 (v n 1 p n 1 ) h 0. 1 0. 0 ( v n := ( n k=1 r k) 1 ( n k=1 r kp k + h) > p n ) (v n p n, v n 1 > p n 1 ) (v n p n, v n 1 p n 1,, v 2 p 2 ) (6) 0 λ i > 0 (i = 1,..., n) (6) λ = ( r1 h (v n p 1 ), r 2 h (v n p 2 ),..., r ) T n h (v n p n ) (7) v n = ( n k=1 r k) 1 ( n k=1 r kp k + h) λ i λ i = r i r 1 + r 2 + + r n [ 1 + 1 h ] n r j (p j p i ) j=1 5 (i = 1,..., n) (8)

i = 1,..., n r i l i > 0, λ i > 0 r n r j (p i p j ) h ε (i = 1,..., n) j=1 ε 3.2 3.2.1 i (i = 1,..., n) Φ i (r, λ) (i = 1,..., n) Φ i (r, λ) = (p i c i k i ) λ i D r i K i (i = 1,..., n) (8) Φ i (r, λ) Φ i (r) Φ i (r) = (p [ i c i k i ) r i 1 + 1 r 1 + r 2 + + r n h ] n r j (p j p i ) D r i K i (i = 1,..., n) j=1 1. p i > c i + k i (i = 1,..., n) p i (i = 1,..., n) Φ i (r) (i = 1,..., n) Φ i (r) r i r = (r 1,..., r n) T max r i Φ i (r i, r i ) s.t. r S } (i = 1,..., n) (9) 6

{ S = r } n j=1 r j (p i p j ) h ε, l i r i u i, i = 1,..., n r i r i S i S i r i S i (r i ) r S r i S i (r i ) (i = 1,..., n) (9) min r i Φ i (r i, r i ) s.t. r i S i (r i ) } (i = 1,..., n) (10) 1 GNEP(1) (x ν N θ X ν r i n Φ S i ) S i (10) 3.2.2 GNEP (10) p 1 p 2 p n S n n j=1 r j (p i p j ) h ε (i = 1,..., n) 1 n j=1 r j (p n p j ) h ε S S = { r } n r j (p n p j ) h ε, l i r i u i, i = 1,..., n j=1 g(r) = n j=1 r j(p n p j ) (h ε) (10) min r i Φ i (r i, r i ) s.t. g(r i, r i ) 0 r i u i 0 l i r i 0 (i = 1,..., n) (11) (11) KKT 7

ri L i (r, µ i, α i, β i ) = 0 0 µ i g(r) 0 0 α i u i r i 0 0 β i r i l i 0 (i = 1,..., n) (12) L i (r, µ i, α i, β i ) = Φ i (r) + µ i g(r) + α i (r i u i ) + β i (l i r i ) (i = 1,..., n) L (r, µ, α, β) = ( r1 L 1 (r, µ 1, α 1, β 1 ),..., rn L n (r, µ n, α n, β n )) T µ = (µ 1,..., µ n ) T g(r) = (g(r),..., g(r)) T α = (α 1,..., α n ) T, β = (β 1,..., β n ) T, u = (u 1,..., u n ) T, l = (l 1,..., l n ) T n KKT (12) L (r, µ, α, β) = 0 0 µ g(r) 0 0 α u r 0 0 β r l 0 (13) GNEP KKT r r GNEP(10) r GNEP KKT (13) ( µ, α, β ) i (11) (r, µ, α, β) GNEP KKT (13) r GNEP(10) 1. r GNEP(10) r GNEP KKT (13) ( µ, α, β ) (Variational Inequality:VI) find r S such that (s r) T ( ri Φ i (r)) n i=1 0, s S (14) ( ri Φ i (r)) n i=1 S (14) KKT [5] 8

( ri Φ i (r)) n i=1 + µ ( r i g(r)) n i=1 + (α i) n i=1 (β i) n i=1 = 0 0 µ g(r) 0 0 α i u i r i 0 (i = 1,..., n) 0 β i r i l i 0 (i = 1,..., n) (15) r VI(14) r VI KKT (15) ( µ, α 1,..., α n, β 1,..., β n ) r (r, µ, α 1,..., α n, β 1,..., β n ) VI KKT (15) r VI(14) 2. r VI(14) r VI KKT (15) ( µ, α 1,..., α n, β 1,..., β n ) 2. GNEP KKT (13) VI KKT (15) µ = µ 1 = µ 2 = = µ n 2 GNEP KKT (13) GNEP(10) r ( µ, α, β ) r ( µ, α 1,..., α n, β 1,..., β n ) VI KKT (15) VI(14) VI KKT (15) VI(14) r ( µ, α 1,..., α n, β 1,..., β n ) 2 r ( µ, α, β ) GNEP KKT (13) GNEP(10) [6] [7] 3. VI KKT (15) VI(14) 2 GNEP KKT (13) GNEP(10) 3 VI KKT (15) VI(14) GNEP(10) VI [5] r i (i = 1,..., n) (8) λ i (i = 1,..., n) 9

3.2.3 VI(14) VI(14) ( ri Φ i (r)) n i=1 VI(14) [8] F (r) F (r) r [8] A A + A T [9] 4. VI(14) A := ( ri Φ i (r)) n i=1 A + A T A A = 2 Φ 1 (r) r1 2 2 Φ 2 (r) r 1 r 2. 2 Φ n (r) r 1 r n 2 Φ 1 (r) 2 Φ 1 (r) r 1 r 2 r 1 r n 2 Φ 2 (r) 2 Φ 2 (r) r2 2 r 2 r n..... 2 Φ n (r) 2 Φ n (r) r 2 r n rn 2 a ii := 2 Φ i (r) r 2 i a ij := 2 Φ i (r) r i r j = 2a id R 3 = a id R 3 [ ] 1 + 1 n r k (p k p i ) (R r i ) (i = 1,..., n) h k=1 [ { n }] 1 + 1 r k (p k p i ) r j (p j p i ) (2r i R) h k=1 a i(p j p i )D hr 3 (2r i r j + R 2 r j R) (i = 1,..., n, j = 1,..., n, j i) a i = p i c i k i (i = 1,..., n), R = n k=1 r k A + A T 10

A + A T = 2a 11 a 12 + a 21 a 1n + a n1 a 12 + a 21 2a 22 a 2n + a n2...... a 1n + a n1 a 2n + a n2 2a nn 4 2 A + A T 2a ii > j i a ii > 0 (i = 1,..., n) (16) a ij + a ji (i = 1,..., n) (17) Φ i (r) 1 (16) (17) n < 4, p 1 = p 2 = = p n, c 1 + k 1 = c 2 + k 2 = = c n + k n 4 VI KKT (15) r 4.1 VI KKT (15) r VI KKT (15) 0 µ g(r) 0 0 α i u i r i 0 (i = 1,..., n) 0 β i r i l i 0 (i = 1,..., n) (18) Fischer-Burmeister (FB )ϕ(a, b) = a + b a 2 + b 2 FB ϕ(a, b) = 0 a 0, b 0, ab = 0 11

(18) ϕ(µ, g(r)) = 0 ϕ(α i, u i r i ) = 0 (i = 1,..., n) ϕ(β i, r i l i ) = 0 (i = 1,..., n) x = (r, µ, α 1,..., α n, β 1,..., β n ) T Ψ i (x) = ri Φ i (r) + µ ri g(r) + α i β i (i = 1,..., n) ϕ(µ, g(r)) (i = n + 1) ϕ(α j, u j r j ) (i = n + j + 1, j = 1,..., n) ϕ(β j, r j l j ) (i = 2n + j + 1, j = 1,..., n) VI KKT (15) Ψ(x) = Ψ 1 (x) Ψ 2 (x). Ψ 3n+1 (x) = 0 (19) θ FB (x) = Ψ(x) T Ψ(x) (19) (19) min θ FB (x) (20) 4.2 n = 2, 3 CPU Intel(R)Core(TM)2Quad 2.83GHz 4GB (20) MATLAB lsqnonlin 12

4.2.1 n = 2 n = 2 5 D = 1.0, h = 1.0, ε = 0.001 1.1: c 1 = c 2 = 0.3, k 1 = k 2 = 0.1, K 1 = K 2 = 0.2, l 1 = l 2 = 0.1, u 1 = u 2 = 2.0 p 1 = 1.0 p 2 1.0, 1.25, 1.5, 1.75, 2.0 1.2: p 1 = p 2 = 1.0, K 1 = K 2 = 0.2, l 1 = l 2 = 0.1, u 1 = u 2 = 2.0 c 1 + k 1 = 0.4 c 2 + k 2 0.4, 0.6, 0.8 1.3: p 1 = p 2 = 1.0, c 1 = c 2 = 0.3, k 1 = k 2 = 0.1, l 1 = l 2 = 0.1, u 1 = u 2 = 2.0 K 1 = 0.2 K 2 0.2, 0.4, 0.6 1.4: c 1 = c 2 = 0.3, k 1 = k 2 = 0.1, K 1 = K 2 = 0.2, l 1 = l 2 = 0.6, u 1 = u 2 = 2.0 p 1 = 1.0 p 2 1.0, 1.25, 1.5, 1.75, 2.0 1.5: c 1 = c 2 = 0.3, k 1 = k 2 = 0.1, K 1 = K 2 = 0.2, l 1 = l 2 = 0.1, u 1 = u 2 = 0.9 p 1 = 1.0 p 2 1.0, 1.25, 1.5, 1.75, 2.0 1 5 1: 1.1 (p 1, p 2 ) (1.0, 1.0) (1.0, 1.25) (1.0, 1.5) (1.0, 1.75) (1.0, 2.0) r1 0.7500 0.9020 0.9749 0.9157 0.8041 r2 0.7500 0.8211 0.6829 0.4756 0.3186 λ 1 0.5000 0.6309 0.7889 0.8929 0.9444 λ 2 0.5000 0.3691 0.2111 0.1071 0.0556 13

2: 1.2 (c 1 +k 1,c 2 +k 2 ) (0.4, 0.4) (0.4, 0.6) (0.4, 0.8) r1 0.7500 0.7200 0.5625 r2 0.7500 0.4800 0.1875 λ 1 0.5000 0.6000 0.7500 λ 2 0.5000 0.4000 0.2500 3: 1.3 (K 1,K 2 ) (0.2, 0.2) (0.2, 0.4) (0.2, 0.6) r1 0.7500 0.6667 0.5625 r2 0.7500 0.3333 0.1875 λ 1 0.5000 0.6667 0.7500 λ 2 0.5000 0.3333 0.2500 4: 1.4 (p 1, p 2 ) (1.0, 1.0) (1.0, 1.25) (1.0, 1.5) (1.0, 1.75) (1.0, 2.0) r1 0.7500 0.9020 0.9749 1.0155 1.0000 r2 0.7500 0.8211 0.6829 0.6000 0.6000 λ 1 0.5000 0.6309 0.7889 0.9115 1.0000 λ 2 0.5000 0.3691 0.2111 0.0885 0.0000 5: 1.5 (p 1, p 2 ) (1.0, 1.0) (1.0, 1.25) (1.0, 1.5) (1.0, 1.75) (1.0, 2.0) r1 0.7500 0.9000 0.9000 0.9000 0.8041 r2 0.7500 0.8217 0.7500 0.5051 0.3186 λ 1 0.5000 0.6301 0.7500 0.8832 0.9444 λ 2 0.5000 0.3699 0.2500 0.1168 0.0556 14

1 2 r λ 1.1 2 1 λ 1 2 λ 2 r (p 1, p 2 ) = (1.0, 1.25) (p 1, p 2 ) = (1.0, 1.0) 1 r1, 2 r2 (p 1, p 2 ) = (1.0, 1.5) (p 1, p 2 ) = (1.0, 1.25) 1 r1 2 r2 (p 1, p 2 ) = (1.0, 1.75), (1.0, 2.0) (p 1, p 2 ) = (1.0, 1.5) 1 r1, 2 r2 1.2, 1.3 2 1.1 1 λ 1 2 λ 2 r 1 r1, 2 r2 1.4, 1.5 2 1 λ 1 2 λ 2 r 1.1 1.4 (p 1, p 2 ) = (1.0, 1.75), (1.0, 2.0) 2 r2 1.5 (p 1, p 2 ) = (1.0, 1.25), (1.0, 1.5), (1.0, 1.75) 1 r1 1.1 2 r2 1.1 1.4 1 r1 1 r1 1.1 1.5 2 r2 4.1 p 1 = p 2, c 1 + k 1 = c 2 + k 2 4.2.2 n = 3 n = 3 4 n = 2 D = 1.0, h = 1.0, ε = 0.001 15

2.1: c 1 = c 2 = c 3 = 0.3, k 1 = k 2 = k 3 = 0.1, K 1 = K 2 = K 3 = 0.2, l 1 = l 2 = l 3 = 0.1, u 1 = u 2 = u 3 = 2.0 p 1 = 1.0 (p 2, p 3 ) (1.0, 1.0), (1.1, 1.2), (1.1, 1.3), (1.2, 1.4) 2.2: p 1 = p 2 = p 3 = 1.0, K 1 = K 2 = K 3 = 0.2, l 1 = l 2 = l 3 = 0.1, u 1 = u 2 = u 3 = 2.0 c 1 + k 1 = 0.4 (c 2 + k 2, c 3 + k 3 ) (0.4, 0.4), (0.5, 0.6), (0.6, 0.8) 2.3: p 1 = p 2 = p 3 = 1.0, c 1 = c 2 = c 3 = 0.3, k 1 = k 2 = k 3 = 0.1, l 1 = l 2 = l 3 = 0.1, u 1 = u 2 = u 3 = 2.0 K 1 = 0.2 (K 2, K 3 ) (0.2, 0.2), (0.25, 0.3), (0.3, 0.4) 2.4: c 1 = c 2 = c 3 = 0.3, k 1 = k 2 = k 3 = 0.1, K 1 = K 2 = K 3 = 0.2, l 1 = l 2 = l 3 = 0.6, u 1 = u 2 = u 3 = 0.9 p 1 = 1.0 (p 2, p 3 ) (1.0, 1.0), (1.1, 1.2), (1.1, 1.3), (1.2, 1.4) 6 9 6: 2.1 (p 1, p 2, p 3 ) (1.0, 1.0, 1.0) (1.0, 1.1, 1.2) (1.0, 1.1, 1.3) (1.0, 1.2, 1.4) r1 0.6667 0.8474 0.8757 0.9423 r2 0.6667 0.7768 0.8289 0.8336 r3 0.6667 0.5874 0.3892 0.2371 λ 1 0.3333 0.4580 0.5017 0.5906 λ 2 0.3333 0.3421 0.3920 0.3557 λ 3 0.3333 0.1999 0.1062 0.0537 16

7: 2.2 (c 1 +k 1,c 2 +k 2,c 3 +k 3 ) (0.4, 0.4, 0.4) (0.4, 0.5, 0.6) (0.4, 0.6, 0.8) r1 0.6667 0.7451 0.7357 r2 0.6667 0.5698 0.4571 r3 0.6667 0.3068 0.1000 λ 1 0.3333 0.4595 0.5691 λ 2 0.3333 0.3514 0.3536 λ 3 0.3333 0.1892 0.0774 8: 2.3 (K 1, K 2, K 3 ) (0.2, 0.2, 0.2) (0.2, 0.25, 0.3) (0.2, 0.3, 0.4) r1 0.6667 0.7467 0.7407 r2 0.6667 0.5333 0.4444 r3 0.6667 0.3200 0.1481 λ 1 0.3333 0.4667 0.5556 λ 2 0.3333 0.3333 0.3333 λ 3 0.3333 0.2000 0.1111 9: 2.4 (p 1, p 2, p 3 ) (1.0, 1.0, 1.0) (1.0, 1.1, 1.2) (1.0, 1.1, 1.3) (1.0, 1.2, 1.4) r1 0.6667 0.8475 0.8981 0.9000 r2 0.6667 0.7753 0.8260 0.8749 r3 0.6667 0.6000 0.6000 0.6000 λ 1 0.3333 0.4566 0.4879 0.5362 λ 2 0.3333 0.3402 0.3662 0.3413 λ 3 0.3333 0.2032 0.1460 0.1175 17

n = 2 1 2 3 r λ 2.1 2 3 1 λ 1 2 λ 2 3 λ 3 r 1 r1, 2 r2 3 r3 2.2 2 3 1 λ 1, 2 λ 2 3 λ 3 (c 1 + k 1, c 2 + k 2, c 3 + k 3 )=(0.4, 0.5, 0.6) (c 1 + k 1, c 2 + k 2, c 3 + k 3 )=(0.4, 0.4, 0.4) 1 r1 2 r2, 3 r3 (c 1 + k 1, c 2 + k 2, c 3 + k 3 )=(0.4, 0.6, 0.8) (c 1 + k 1, c 2 + k 2, c 3 + k 3 )=(0.4, 0.5, 0.6) 1 r1, 2 r2, 3 r3 2.3 2 3 1 λ 1 2 λ 2 3 λ 3 r (K 1, K 2, K 3 ) = (0.2, 0.25, 0.3) (K 1, K 2, K 3 ) = (0.2, 0.2, 0.2) 1 r1 2 r2, 3 r3 (K 1, K 2, K 3 )=(0.2, 0.3, 0.4) (K 1, K 2, K 3 ) = (0.2, 0.25, 0.3) 1 r1, 2 r2, 3 r3 2.4 2 3 2.1 1 λ 1 2 λ 2 3 λ 3 r (p 1, p 2, p 3 )=(1.0, 1.1, 1.2), (1.0, 1.1, 1.3), (1.0, 1.2, 1.4) 3 r3 (p 1, p 2, p 3 ) = (1.0, 1.2, 1.4) 1 r1 2.1 1 r1 3 r 3 2.1 1 r1 2 r2 1 r 1 3 r3 2.1 2 r2 4.1 p 1 = p 2 = p 3, c 1 + k 1 = c 2 + k 2 = c 3 + k 3 18

4.2.3 n i=1 (hλ2 i /2r i ) 1.1, 2.1 2 i (i = 1,..., n) Φ i (r) 1 r i Φ i (r) Φ i (r) r i Φ i (r)/ r i > 0 Φ i (r) Φ i (r)/ r i < 0 Φ i (r) r i r i r i r i Φ i (r)/ r i < 0 1 1.2, 1.3 r 1/r 2 = λ 1/λ 2 2.2, 2.3 r i /r j = λ i /λ j (i, j = 1, 2, 3) i (i = 1,..., n) λ i λ i = r i / n k=1 r k 1.4, 1.5, 2.4 19

5 1 n 4.2.3 VI(14) GNEP(10) 20

[1].., 2004. [2] A. Y. Ha, L. Li, and S.-M. Ng. Price and delivery logistics competition in a supply chain. Management Science, Vol. 49, pp. 1139 1153, 2003. [3] F. Facchinei and C. Kanzow. Generalized Nash equilibrium problems. A Quarterly Journal of Operations Research, Vol. 5, pp. 173 210, 2007. [4] R. T. Rockafellar. Network Flows and Monotropic Optimization. Wiley, 1984. [5] F. Facchinei and J.-S. Pang. Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, 2006. [6] P. T. Harker. Generalized Nash games and quasi-variational inequalities. European Journal of Operational Research, Vol. 54, pp. 81 94, 1991. [7] F. Facchinei, A. Fischer, and V. Piccialli. On generalized Nash games and variational inequalities. Operations Research Letters, Vol. 35, pp. 159 164, 2007. [8].., 2001. [9] R. W. Cottle, J.-S. Pang, and R. E. Stone. The Linear Complementarity Problem. Academic Press, 1992. 21