第1章 微分方程式と近似解法

Similar documents
() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Gmech08.dvi

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

Untitled

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

第5章 偏微分方程式の境界値問題

( ) ( )



1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

プログラム

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

TOP URL 1

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

all.dvi

抄録/抄録1    (1)V

08-Note2-web

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

Gmech08.dvi

構造と連続体の力学基礎

研修コーナー

パーキンソン病治療ガイドライン2002

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

December 28, 2018

TOP URL 1

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i



() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

本文/目次(裏白)

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )



1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

untitled

応力とひずみ.ppt

TOP URL 1

b3e2003.dvi

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

高等学校学習指導要領

高等学校学習指導要領

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

°ÌÁê¿ô³ØII

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0


Z: Q: R: C: sin 6 5 ζ a, b

TOP URL 1

pdf

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

第10章 アイソパラメトリック要素

i

量子力学 問題


sec13.dvi

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

gr09.dvi

all.dvi

A


[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

Transcription:

April 12, 2018 1 / 52

1.1 ( ) 2 / 52

1.2 1.1 1.1: 3 / 52

1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52

1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u : (0, t T ) (0, l) R b u 5 / 52

1 1.3.1 ( ) u (t, x) (t, x) (0, t T ) (0, l) w (t, x) = c V (x) u (t, x) (1.3.1) c V : (0, l) R Fourier ( 1.2) 6 / 52

1 1.3.2 (Fourier (1 )) u (t, x) x ( ) q (t, x) = λ (x) u (t, x) x (1.3.2) λ : (0, l) R u u(t,x) q(t,x) x 1.2: Fourier 7 / 52

1 (t, x) (0, t T ) (0, l) adxdt (w (t + dt, x) w (t, x)) adx = (b (t, x) dx q (t, x + dx) + q (t, x)) adt ( 1.3) dx 0, dt 0 w t q (t, x) = b (t, x) (t, x) x (1.3.1) (1.3.2) u c V t ( λ u ) = b x x 8 / 52

1 b(t,x)adxdt a q(t,x)adt q(t,x+dx)adt dx 1.3: 2 1 u 1 u D : (0, t T ) R x = 0 u (t, 0) = u D (t) u 1 Dirichlet 9 / 52

1 2 p N : (0, t T ) R ( 1.3.2) x = l λ u x (t, l) = p N (t) u 2 Neumann 3 u 0 : (0, l) R t = 0 u (0, x) = u 0 (x) u 10 / 52

1 u 2 (1.4 ) b (t, x) = b (x) u (t, x) = u (x) d ( λ du ) = b dx dx (1.3.3) (1.3.3) d (1.3.5) (1.4 ) 11 / 52

d 1.3.2 d d {2, 3} 1.4 2 Ω R d Γ D Ω Ω Γ N = Ω \ Γ D b : (0, t T ) Ω R, u : (0, t T ) Ω R Fourier u,b u(t,x) x 2 u D Ω b(t,x) νp(t,x) x 1 Γ D 1.4: 2 12 / 52

d 1.3.3 (Fourier (d )) u : (0, t T ) Ω R ( ) q : (0, t T ) Ω R d 1 λ 11 λ 1d q = q. =..... q d λ d1 λ dd x 1. x d u = Λ u Λ = (λ ij ) ij : Ω R d d ( 2.4.5) 13 / 52

d λ : Ω R Λ = λi (I ) q = λ u (1.3.4) 14 / 52

d (t, x) (0, t T ) Ω dx 1 dx d dt e i x i (w (t + dt, x) w (t, x)) dx 1 dx 2 dx d = b (t, x) (q i (t, x + e i dx i ) q i (t, x)) dt i {1,,d} ( 1.5) dx 1,, dx d 0, dt 0 w t = b i {1,,d} q i x i 15 / 52

d q(t,x+e 3 dx 3 )dx 1 dx 2 dt q(t,x)dx 2 dx 3 dt q(t,x)dx 1 dx 3 dt b(t,x)dx 1 dx 2 dx 3 dt q(t,x+e 2 dx 2 )dx 1 dx 3 dt dx 3 q(t,x+e 1 dx 1 )dx 2 dx 3 dt x 3 dx 1 x 2 x 1 dx 2 q(t,x)dx 1 dx 2 dt 1.5: 3 16 / 52

d (1.3.1), (1.3.4) c V u t ( x 1 x d ) = c V u t (Λ u) = b λ 11 λ 1d....... λ d1 λ dd x 1.. x 3 u d c V u t (λ u) = b λ c V u t λ u = b 17 / 52

d = Laplace 2 18 / 52

d d u 1 u D : (0, t T ) Γ D R u = u D on (0, t T ) Γ D ( ) 2 p N : (0, t T ) Γ N R ν (Λ u) = p N on (0, t T ) Γ N ( ) λ ν u = p N on (0, t T ) Γ N ν ( ) ( ( )/ x) ν 3 u 0 : Ω R t 0 (0, t T ) u (t 0, x) = u 0 (x) in x Ω ( ) 19 / 52

d b (t, x) = b (x) u (t, x) = u (x) (Λ u) = b (1.3.5) Ω u Γ D Ω d {2, 3}, Γ D Ω Γ N = Ω \ Γ D c V : Ω R Λ : Ω R d d 20 / 52

d 1.3.4 ( ) b : (0, t T ) Ω R, p N : (0, t T ) Γ N R, u D : (0, t T ) Γ D R, u 0 : Ω R c V u t (Λ u) = b in (0, t T) Ω, ν (Λ u) = p N on (0, t T ) Γ N, u = u D on (0, t T ) Γ D, u = u 0 in Ω at t = 0 u : (0, t T ) Ω R 21 / 52

d 1.3.5 ( ) b : Ω R, p N : Γ N R, u D : Γ D R (Λ u) = b in Ω, ν (Λ u) = p N on Γ N, u = u D on Γ D u : Ω R 1.3.5 Λ = I Poisson 22 / 52

2 1.4 2 1.3 2 ( 2 ) 23 / 52

2 1.4.1 ( 2 ) / x i (i {1,, d}) ξ i ( ) f (ξ 1, ξ 2,, ξ d ) = 0 1 (ξ 1,..., ξ d ) = (0,..., 0) 2 (ξ 1,..., ξ d ) (0,..., 0) 3 f (ξ 1, ξ 2,, ξ d ) = 0 ξ 1 f 1 (ξ 2,, ξ d ) = 0 f 1 (ξ 2,, ξ d ) = 0 (ξ 2,..., ξ d ) = (0,..., 0) Laplace ( ) 2 u = x 2 + + 2 1 x 2 u = 0 d 24 / 52

2 f (ξ 1,, ξ d ) = ξ 2 1 + + ξ 2 d = 0 (x 1,..., x d ) = (0,..., 0) Laplace Poisson u = b Helmholz u + ω 2 u = 0 b ω 1 (Dirichlet ) 2 (Neumann ) 3 (Robin ) ( ) ( ) ( ) ( ) Stokes ( ) 25 / 52

2 ( ) ü c 2 u = 2 u 2 t 2 c2 x 2 + 2 1 x 2 + 2 2 x 2 u = 0 3 c f (ξ 1,, ξ d ) = ξ 2 1 c 2 ( ξ 2 2 + + ξ 2 d) = 0 (x 1,..., x d ) (0,..., 0) 26 / 52

2 ( 2 u a u = u t a x 2 1 + 2 x 2 + 2 2 x 2 3 ) u = 0 a f (ξ 1,, ξ d ) = ξ 1 a ( ξ 2 2 + + ξ 2 d) = 0 27 / 52

2 1.5 1.5.1 ( ) 1 u : R d R n α, β R, x, y R d u (αx + βy) = αu (x) + βu (y) u (linear function), (linear operator) 2 U, V D : U V α, β R, x, y U D (αx + βy) = αdx + βdy D (linear operator) ( ) D (x) Dx 28 / 52

2 u : R R du u (x + ϵ) u (x) (x) = lim dx ϵ 0 ϵ α, β R, u, v d αu (x + ϵ) + βv (x + ϵ) αu (x) βv (x) (αu + βv) = lim dx ϵ 0 ϵ αu (x + ϵ) αu (x) βv (x + ϵ) βv (x) = lim + lim ϵ 0 ϵ ϵ 0 ϵ = α du dx + β dv dx 29 / 52

2 : µ mg 1.1: 30 / 52

2 1.1 l d2 θ dt 2 + g sin θ = 0 sin θ θ = 0 sin θ = θ θ3 3! + θ5 5! + θ π sin θ θ 31 / 52

2 Van der Pol d 2 u dt 2 µ ( 1 u 2) du dt = 0 u 1.2 32 / 52

2 1.2: Van der Pol 33 / 52

2 f(u) f(u) f(u) u u u (a) (b) (c) 1.3: 34 / 52

2 l θ l(1 cosθ) (a) mg (b) 1.4: 35 / 52

2 f(u ) f(u ) u u (a) Coulomb (b) 1.5: 36 / 52

Poisson 1.6 Poisson Poisson 1.6.1 (1 Poisson ) b : (0, 1) R, u D R, p N R d2 u = b in (0, 1), dx2 u(0) = u D, du dx (1) = p N u : (0, 1) R 37 / 52

Poisson Γ D Ω Γ N = Ω \ Γ D 1.6.2 (d Poisson ) Ω R d, d {2, 3}, Γ D Ω, b : Ω R, p N : Γ N R, u D : Γ D R u = b in Ω, u ν = p N on Γ N, u = u D on Γ D u : Ω R 38 / 52

1.7 1.6.1 m (0, 1) {x 0, x 1, x 2,, x m }, x 0 = 0, x m = 1, h = 1/m u h : (0, 1) R u h (x i ) = u i u 1 u i{1 u i u m u 0=u D u i+1 u m{1 h x 0=0 x 1 x i{1 x i x i+1 x m{1 x m=1 1.1: u h (x) x 39 / 52

Taylor u h (x i+1 ) = u h (x i ) + h du h dx (x i) + h2 2 + h3 6 d 3 u h dx 3 (x i) + O ( h 4) u h (x i 1 ) = u h (x i ) h du h dx (x i) + h2 2 h3 6 d 3 u h dx 3 (x i) + O ( h 4) 2 d 2 u h dx 2 (x i) d 2 u h dx 2 (x i) u h (x i+1 ) + u h (x i 1 ) = 2u h (x i ) + h 2 d2 u h dx 2 (x i) + O ( h 4) 40 / 52

h 2 O ( h 2) d2 u h dx 2 (x i) = u h (x i+1 ) 2u h (x i ) + u h (x i 1 ) h 2 41 / 52

Taylor u h (x m 1 ) = u h (x m ) h du h dx (x m) + O ( h 2) h O (h) du h dx (x m) = u h (x m ) u h (x m 1 ) h 42 / 52

u h (x i ) = u i, b (x i ) = b i 1.6.1 u 0, u 1, u 2,, u m m + 1 1 u 0 = u D, u i+1 2u i + u i 1 h 2 = b i i {1, 2,, m 1}, u m u m 1 = p N h 1 43 / 52

1.6.2 m n Ω D {x 00, x 01, x 02,, x mn } h = 1/m = 1/n u h : D R u h (x ij ) = u ij D x mn x ij x i j+1 x i{1 j x ij x i+1 j x 00 h D x i j{1 1.2: 2 44 / 52

Taylor u h (x i+1 j ) = u h (x ij ) + h u h (x ij ) + h2 2 u h x 1 2 x 2 (x ij ) 1 + h3 6 3 u h x 3 1 (x ij ) + O ( h 4) u h (x i 1 j ) = u h (x ij ) h u h (x ij ) + h2 2 u h x 1 2 x 2 (x ij ) 1 h3 6 3 u h x 3 1 (x ij ) + O ( h 4) u h (x i j+1 ) = u h (x ij ) + h u h (x ij ) + h2 2 u h x 2 2 x 2 (x ij ) 2 + h3 6 3 u h x 3 2 (x ij ) + O ( h 4) u h (x i j 1 ) = u h (x ij ) h u h (x ij ) + h2 2 u h x 2 2 x 2 (x ij ) 2 45 / 52

h3 6 3 u h x 3 2 (x ij ) + O ( h 4) 4 h 2 O ( h 2) 2 u h x 2 1 (x ij ) + 2 u h x 2 2 (x ij ) = u h (x i+1 j ) + u h (x i j+1 ) + u h (x i 1 j ) + u h (x i j 1 ) 4u h (x ij ) h 2 Γ D x ij u h (x ij ) = u D (x ij ) Γ D x 1 x 2 (x ij1, x i+1 j 1 ), (x ij1, x i j+1 1 ) Taylor u h (x i+1 j ) = u h (x ij ) + h u h x 1 (x ij ) + O ( h 2) 46 / 52

u h (x i j+1 ) = u h (x ij ) + h u h x 2 (x ij ) + O ( h 2) h O (h) u h (x ij ) = u h (x i+1 j ) u h (x ij ) x 1 h u h (x ij ) = u h (x i j+1 ) u h (x ij ) x 2 h Ω Ω x ij u h (x ij ) = u ij, b (x ij ) = b ij, p N (x ij ) = p Nij, u D (x ij ) = u D ij x ij ν ij 1.6.2 {u ij } ij 1 u ij = u D ij, u i+1 j + u i j+1 + u i 1 j + u i j 1 4u ij h 2 = b ij, 47 / 52

u i+1 j u ij h ν ij1 + u i j+1 u ij ν ij2 = p Nij h 1 48 / 52

x ij ν ij (weak form) 49 / 52

1.8 1 ( ) / 2 / / 2 1 2 d2 u dx 2 + u = b in (0, 1), u(0) = u D, du dx (1) = p N 1 (0, 1) {x 0 = 0, x 1, x 2,, x m = 1} h = 1/m u h : (0, 1) R u h (x i ) = u i, b (x i ) = b i 50 / 52

1.9 1 1 2 ( ) Fourier 2 3 2 Van der Pol 4 1 2 Poisson 51 / 52

[1]. :., 1980. [2],.., 1977. [3].,., 2004. [4]. :., 2000. 52 / 52