Norisuke Sakai (Tokyo Institute of Technology) In collaboration with M. Eto, T. Fujimori, Y. Isozumi, T. Nagashima, M. Nitta, K. Ohashi, K. Ohta, Y. T

Similar documents
(Tokyo Institute of Technology) Seminar at Ehime University ( ) 9 3 U(N C ), N F /2 BPS ( ) 12 5 (

( ) : (Technocolor)...

SO(2)

TOP URL 1


1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

量子力学 問題

『共形場理論』

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

TOP URL 1

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.


all.dvi



Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

SUSY DWs


all.dvi

TOP URL 1

LLG-R8.Nisus.pdf

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

prime number theorem

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

Mathematical Logic I 12 Contents I Zorn

Holton semigeostrophic semigeostrophic,.., Φ(x, y, z, t) = (p p 0 )/ρ 0, Θ = θ θ 0,,., p 0 (z), θ 0 (z).,,,, Du Dt fv + Φ x Dv Φ + fu +

eto-vol1.dvi

total2010.dvi

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

( )

Λ(1405) supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2009, Aug. 5th 1

: , 2.0, 3.0, 2.0, (%) ( 2.


IA

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

Gmech08.dvi

DaisukeSatow.key

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α


B ver B

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

本文/目次(裏白)

中央大学セミナー.ppt

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n


N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

š š o š» p š î å ³å š š n š š š» š» š ½Ò š ˆ l ˆ š p î å ³å š î å» ³ ì š š î å š o š š ½ ñ š å š š n n å š» š m ³ n š


III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F


Dynkin Serre Weyl

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

Ÿ ( Ÿ ) Ÿ šœš 100,000 10,000,000 10,000,000 3,250,000 1,000,000 24,350,000 5,000,000 2,500,000 1,200,000 1,000,000 2,960,000 7,000,000 1,500,000 2,200

QMII_10.dvi

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

(1) (2) (3) (4) 1

all.dvi

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π)

Part () () Γ Part ,

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

pptx

u Θ u u u ( λ + ) v Θ v v v ( λ + ) (.) Θ ( λ + ) (.) u + + v (.),, S ( λ + ) uv,, S uv, SH (.8) (.8) S S (.9),

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í


DVIOUT-fujin

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

( š ) œ 525, , , , ,000 85, , ,810 70,294 4,542,050 18,804,052 () 178,710 1,385, , ,792 72,547 80,366

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

A

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

Z: Q: R: C: sin 6 5 ζ a, b

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

< F31332D817992B48DC A8CCB8E9F81458CA28E942E6A7464>

2 0.1 Introduction NMR 70% 1/2

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

85 4

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m


Kaluza-Klein(KK) SO(11) KK 1 2 1

,,..,. 1

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

Transcription:

Norisuke Sakai (Tokyo Institute of Technology) In collaboration with M. Eto, T. Fujimori, Y. Isozumi, T. Nagashima, M. Nitta, K. Ohashi, K. Ohta, Y. Tachikawa, D. Tong, M. Yamazaki, and Y. Yang 2008.3.21-26, JPS and JMS meeting at Kinki University Contents 1 Introduction 3 2 BPS 6 3 U(N C ), N F ( ) 8 4 1/2 BPS 10

5 : 15 6 ( ) 17 7 21 8 Conclusion 24 2

1 Introduction SU(3) SU(2) U(1) 1. (Technocolor) TeV L. Susskind,Phys. Rev.D20 (1979) 2619; S. Weinberg, Phys. Rev.D19 (1979) 1277; D13 (1976) 2. 974; S. Dimopoulos, and L. Susskind,Nucl. Phys. B155 (1979) 237; 0 : m B m B = m F 1 2 : m F m F = 0 S.Dimopoulos, H.Georgi, Nucl.Phys.B193 (1981) 150; N.Sakai, Z.f.Phys.C11 (1981) 153; 3 E.Witten, Nucl.Phys.B188 (1981) 513;

Figure 1: ( ) ( ) α i = gi 2 /4π, (i = 1, 2, 3) U(1), SU(2), SU(3) : (sequestering) 3. (Brane World)= 4 ( ) 4 P.Horava and E.Witten, Nucl.Phys.B475, 94 (1996); N.Arkani-Hamed, SDimopoulos, G.Dvali, 4

y: Phys.Lett.B429 (1998) 263 ; I.Antoniadis, N.Arkani-Hamed, S.Dimopoulos, G.Dvali, Phys.Lett.B436 (1998) 257; Randall, Sundrum, Phys.Rev.Lett.83 (1999) 3370; 4690; = :,,... LHC 5

トンネル周長 27km ( 参考 : 東京 JR 山手線の周長 34.5km) 4

2 BPS φ (λ > 0) : φ + v, L = µ φ µ φ λ(φ 2 v 2 ) 2 φ v ( ) ( ) : ( ) π 0 (M) y = x 2 E = ( y φ) 2 + λ(φ 2 v 2 ) 2 = ( y φ + λ(φ 2 v 2 )) 2 + y [2 )] λ (v 2 φ φ3 3 [ dye 2 )] λ (v 2 φ φ3 3 Bogomol nyi-prasad-sommerfield (BPS) 6

Bogomol nyi, Sov.J.Nucl.Phys. 24 (1976) 449; Prasad and Sommerfield, Phys.Rev.Lett. 35 (1975) 760. BPS (1 ) y φ + λ(φ 2 v 2 ) = 0 φ = v tanh( λv(y y 0 )) : y 0 ( ) ( ) : BPS ( ) 7

: U(1) φ L = 1 4e 2F µνf µν + D µ φ(d µ φ) λ ( φφ v 2) 2 4 D µ φ = ( µ + iw µ )φ, F µν = µ W ν ν W µ : ( ) k = 1 2π d 2 x F 12 : = U(1) :, λ < e 2 : : λ = e 2 : BPS λ > e 2 : (λ = e 2 ) (SUSY) BPS 3 U(N C ), N F ( ) 5 (M, N, = 0, 1, 2, 3, 4), U(N C ) g 8

W M, Σ ( :N C N C ) ( ) : H ra H ra ( :N C N F ) ( r = 1,, N C ; A = 1,, N F ) L = 1 2g 2Tr(F MN(W )F MN (W )) + 1 g 2Tr(DM ΣD M Σ) +Tr [ D M H(D M H) ] V V = g2 [ (HH 4 Tr ) 2 ] c1 NC + Tr [ (ΣH HM)(ΣH HM) ] D M H = ( M + iw M )H, D M Σ = M Σ + i[w M, Σ] F MN (W ) = M W N N W M + i[w M, W N ], (M) A B m A δ A B (8 SUSY) m 1 = = m NF SU(N F ) F Σ m A1 = = m Ak SU(k) 9

U(1) N F 1 F : HH = c1 NC, ΣH HM = 0 ( ),,, 4 1/2 BPS : m A > m A+1 A 1 A 2 A NC : H ra = c δ A r A, Σ = diag(m A1,, m ANC ) 1/2 BPS N F! (N F N C )!N C! en F log(x x (1 x) (1 x)), x N C /N F y x 4, 4 D W M y = 0 10

E : [ E = Tr D y H 2] + Tr [ ΣH HM 2] + 1 ( g 2Tr (D y Σ) 2) + g2 [ (HH 4 Tr ) 2 ] c1 NC = Tr D y H + ΣH HM 2 + 1 ( g 2Tr D y Σ g2 ( c1nc HH )) 2 + c y TrΣ 2 1/2 BPS y H + iw y H = ΣH + HM, (4.1) D y Σ = g 2 ( c1 NC HH ) /2 (4.2) : ( ) A 1 A 2 A NC B 1 B 2 B NC BPS Σ + iw y S 1 (y) y S(y) S(y) GL(N C, C) BPS (4.1) : H(y) = S 1 (y)h 0 e My 11

H 0 N C N F Y.Isozumi, M.Nitta, K.Ohashi, and N.Sakai, Phys.Rev.Lett.93 (2004) 161601; BPS (4.2) Ω SS ( y Ω 1 y Ω ) = g 2 c ( ) 1 C Ω 1 Ω 0, Ω0 c 1 H 0 e 2My H 0 H 0 Ω(y) S(y) Σ, W y, H y = ± : U(1) : H 0 N.Sakai and Y.Yang, Com.Math.Phys.267 (2006) 783; N.Sakai and D.Tong, JHEP 03 (2005) 019 H 0 g 2 c/ m 1: Ω = Ω 0 c 1 H 0 e 2My H 0 g 2 : (NLSM) 12

V - : (S NC 2 ) (S, H 0 ) (S, H 0 ) H = S 1 H 0 e My S S = V S, H 0 H 0 = V H 0, V GL(N C, C) BPS : M = {H 0 H 0 V H 0, V GL(N C, C)} G NF,N C SU(N F ) SU(N C ) SU(N F N C ) U(1) ( ) N C Ñ C N C (N F N C ) 1 0.8 0.6 0.4 0.2-40 -20 20 40 y Figure 2:. H 0 : 13

U(1) : H 0 = (e r 1, e r 2,, e r N F ), H = S 1 H 0 e My = S 1 (e r 1+m 1 y,, e r N F +m NF y ) i i + 1 Rer i + m i y Rer i+1 + m i+1 y Im(r i r i+1 ) : m 3 m 2 m 1 m NF m NF-1 m NF-2 m 4 m 3 A3 m 2 A2 m 1 A1 A1 1 2 3 B1 BNC BNC-1 B1 Figure 3: U(N C ) : Ñ C N F N C : 1,, N C Ñ C + 1,, N F dim R M 1,,N C Ñ C +1,,N F N F,N C 14 = 2N wall = 2N C Ñ C

M = M 1/1 + M 1/2 = M 0 M 1 M N CÑC D M.Eto, Y.Isozumi, M.Nitta, K.Ohashi, K.Ohta, and N.Sakai, Phys.Rev.D71 (2005) 125006, BPS M.Eto, Y.Isozumi, M.Nitta, K.Ohashi, and N.Sakai, Phys. Rev. D73 (2006) 125008, 1/2 BPS M.Eto, Y.Isozumi, M.Nitta, K.Ohashi, and N.Sakai, Phys.Rev.Lett.96 (2006) 161601, 5 : M.Eto, T.Fujimori, M.Nitta, K.Ohashi, and N.Sakai, arxiv:0802.3135, ( ) U(1),N F = 4, M = (m, 0, 0, m) U(2) U(1) 2 SU(2)/U(1) 15

¹Ñ ¼ Ñ ¼ Æ Æ ¼µ µ ½ Æ Æ ½ ½µ Æ Ò............ Æ Ô Æ ¼ Ƶ ¼µ Æ Ô µ Æ Ô µ ÑÓ ËÍ ¾µ ËÍ Æ µä ËÍ Æ µê Figure 4: ( )U(1), ( m, 0, 0, m) ( )U(N),N F = 2N, (m,, m, m,, m) U(N),N F = 2N, M = 1 N N 2 diag( {}}{{}}{ m,, m, m,, m) 2N 2 N SU(N) SU(N) U(1)/SU(N) N 2 (NG) N 2 NG 16

SU(N) SU(N) U(1)/U(1) N 1 2N 2 N + 1 (NG) N 1 NG 6 ( ) : Tong, Phys.Rev.D69 (2004) 065003; Auzzi-Bolognesi-Evslin-Konishi, Nucl.Phys.B686 (2004) 119; Shifman-Yung, Phys.Rev.D70 (2004) 045004; Auzzi-Bolognesi-Evslin, JHEP 0502 (2005) 046; 1/2 γ 123 ε i = ε i x 3 1/2SUSY : γ 12 (iσ 3 ) i jε j = ε i ( + ): 1/4 SUSY γ 3 (iσ 3 ) i jε j = ε i x 3 1/4 BPS D 3 Σ = g 2 ( c1 NC H 1 H 1 ) /2 + F 12, D 3 H 1 = ΣH 1 + HM, 0 = D 1 H 1 + id 2 H 1, 0 = F 23 D 1 Σ, 0 = F 31 D 2 Σ 17

Figure 5: ( ) ( ) BPS E t w + t v + t m + m J m t w, t v, t m t w = c 3 Tr(Σ), t v = ctr(f 12 ), t m = 2 g 2 mtr( 1 2 ϵmnl F nl Σ) : [D 1 + id 2, D 3 + Σ] = 0 ( ) S(x m ) GL(N C, C) (D 3 + Σ)S 1 = 0 Σ + iw 3 S 1 3 S (D 1 + id 2 )S 1 = 0 W 1 + iw 2 2iS 1 S z x 1 + ix 2, and / z. 18

BPS H 1 = S 1 (z, z, x 3 )H 0 (z)e Mx3 H 0 (z): z N C N F Y.Isozumi, M.Nitta, K.Ohashi, and N.Sakai, Phys.Rev.D71 (2005) 065018 ; Ω SS (Ω 0 H 0 e 2My H 0 ) 4 (Ω 1 Ω) + 3 (Ω 1 3 Ω) = g 2 ( c Ω 1 Ω 0 ) x 2 10 5 10-10 0-5 5 x 1 0-5 -10-20 -10 x 3 0 10 20 Figure 6: (t w + t v = 0.5c) : H 0 (z)e Mx3 = c((z 4 2i)(z + 5 + 8i)e 3/2x3, (z + 8 i)(z 7 + 6i)e 1/2x3 +15/2, z 2 e 1/2x3 +15/2, (z 6 5i)(z + 6 7i)e 3/2x3 ). 19

(g 2 ) M.Eto, Y.Isozumi, M.Nitta, K.Ohashi, and N.Sakai, Phys.Rev.D72 (2005) 025011 ; 1/4BPS M.Eto, Y.Isozumi, M.Nitta, K.Ohashi, and N.Sakai, Phys.Rev.D72 (2005) 085004 ; 1/4BPS (6 5 4) M.Eto, Y.Isozumi, M.Nitta, K.Ohashi, and N.Sakai, J.Phys.A 39 (2006) R315 ; T.Fujimori, M.Nitta, K.Ohta, N.Sakai and M.Yamazaki, in preparation ; 4 2 (det(hh ) = 0) = 20

7 M.Eto, T.Fujimori, T.Nagashima, M.Nitta, K.Ohashi, and N.Sakai, Phys.Rev.D75 (2007) 045010; M.Eto, Y.Isozumi, M.Nitta, K.Ohashi, and N.Sakai, Phys.Lett. B632 (2006) 384; 1/4 BPS : ( ) (6 )2 4, M = 0, 1, 2, 3 5 4 3 2 1 0-10 10-5 5 0 0 x 5-5 y (a) (Σ ) (b) (g 2 ) Figure 7: U(1) (N F = 4) (a): Σ = Σ 1 + iσ 2, (b):. ([m A, n A ] = [1, 0], [0, 1], [ 1, 1], [0, 0]) 21

1/4 BPS H = S 1 H 0 e M 1x 1 +M 2 x 2 H 0 : N C N F ( N C ) 4 2 0-2 -4 4 7.5 2 5 0-2 2.5-40 (a) U(1), (N F = 4) (b) U(2) (N F = 4) Figure 8: R 3. ( ) H 0 = c(1, 1, 1, φ) with φ = e r+iθ L eff = K ij (φ, φ ) µ φ i µ φ j, K(φ, φ ) = K w (φ, φ )+K g (φ, φ ) 22

K w (φ, φ ) d 2 x c logdetω, K g (φ, φ ) d 2 x 1 2g 2Tr(Ω 1 α Ω) 2 U(1),N NF = 4 ds 2 = c [ r 1 ( m12 2 + m 23 2 + m 31 2 )] (m 2 dr 2 +dθ 2 ) α 1 α 2 α 3 g 2 c α 3 α 1 [123] [123] :Σ, α A 1 2 [123] ϵ ABC m B m C α 2 Figure 9: U(2), 23

8 Conclusion 1. 2. ( )U(N C ) N F BPS 3. ( ) H 0 4. (g 2 ) ( ) 5. BPS 6. 7. 1/4 BPS ( ) 8. 1/2, 1/4 BPS 24