II ( : )

Similar documents
ÄêÀÑʬ¤ÎÄêµÁ¤Ë¤Ä¤¤¤Æ

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

- II

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

高等学校学習指導要領

高等学校学習指導要領

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Chap9.dvi

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)


(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

³ÎΨÏÀ

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

1 I

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

b n c n d n d n = f() d (n =, ±, ±, ) () πi ( a) n+ () () = a R a f() = a k Γ ( < k < R) Γ f() Γ ζ R ζ k a Γ f() = f(ζ) πi ζ dζ f(ζ) dζ (3) πi Γ ζ (3)

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

all.dvi

基礎数学I

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

I

量子力学 問題

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

mugensho.dvi

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

Chap11.dvi

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

f(x) = e x2 25 d f(x) 0 x d2 dx f(x) 0 x dx2 f(x) (1 + ax 2 ) 2 lim x 0 x 4 a 3 2 a g(x) = 1 + ax 2 f(x) g(x) 1/2 f(x)dx n n A f(x) = Ax (x R

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

2000年度『数学展望 I』講義録


III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1


B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1


I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

Morse ( ) 2014

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

FX ) 2

FX自己アフリエイトマニュアル

18 ( ) ( ) [ ] [ ) II III A B (120 ) 1, 2, 3, 5, 6 II III A B (120 ) ( ) 1, 2, 3, 7, 8 II III A B (120 ) ( [ ]) 1, 2, 3, 5, 7 II III A B (

pdf

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b


. p.1/15

A A p.1/16

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

meiji_resume_1.PDF

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

Z: Q: R: C: sin 6 5 ζ a, b

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

body.dvi

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

FA0072 FA0028


曲面のパラメタ表示と接線ベクトル

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ


grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

No ii

Untitled

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

Transcription:

http://www.math.sci.hokudai.ac.jp/~yano/biseki2_2015/ 2015 II ( : )

f(x) : [a, b] F(x) : F (x) = f(x) ( ) F(x) F(b) F(a) f(x) b a f(x)dx = [ F(x) ] b = F(b) F(a) a f(x) x = a, x = b x S

紀元前 3000 年 紀元前 300 年 17 世紀 18 世紀 19 世紀 積分 古代エジプト 古代ギリシャ積分法の起源 微分 フェルマー デカルト 微分積分学の黎明期 ニュートンライプニッツ コーシー 微分積分学の誕 厳密化と発展 リーマン

: : ( 287? 212 )

( )

( 3000 332 ) ( ) ナイル川 土地

( )

3 3 3 3 3 3 9 ( 9 ) 5 ( 3 ) + 4 ( ) = 7 ( 3 ) = 63 9 (63 1 ) 64 ( ) π πr 2 = π(9/2) 2 64 π 64 22 9 2 = 3.160493

( 1650 ) 87 48

( 1650 ) 87 48 : ( ) ( )

( 1650 ) 87 48 9 1/ 9 18 2 8 1 36 4 16 2 72 8/ 32 4 81 64 8 8(= 9 9 1 9 )

http://math-info.criced.tsukuba.ac.jp/museum/rhindpapyrus/index.htm Géométrie dans l Égypte antique http://fr.m.wikipedia.org/wiki/g%c3%a9om%c3%a9trie_dans_l%27%c3%89gypte_ antique

紀元前 3000 年 紀元前 300 年 17 世紀 18 世紀 19 世紀 積分 古代エジプト 古代ギリシャ積分法の起源 微分 フェルマー デカルト 微分積分学の黎明期 ニュートンライプニッツ コーシー 微分積分学の誕 厳密化と発展 リーマン

: : (1596 1650 ) (1601 1665 )

, : (1642 1727 ) (1646 1716 )

: ϵ-δ : (1789 1857 ) (1826 1866 )

(? 1708 ) 12

c ( ) 800 c ( ) ( ) ( )

( ) ナイル川 土地

f(x) x x = a, x = b

f(x) x x = a, x = b

f(x) x x = a, x = b

f(x) x x = a, x = b

f(x) x x = a, x = b

n [a, b] x 0 = a, x n = b a b n 1 x 1 < x 2 < < x n 1 [a, b] n : a = x 0 < x 1 < < x n 1 < x n = b = max 1 i n x i ( x i = x i x i 1 )

f(x) : [a, b] ( ) : a = x 0 < x 1 < < x n 1 < x n = b : [a, b] 1 i n [x i 1, x i ] ξ i ( ) {ξ i } n S(, {ξ i }) = f(ξ i ) x }{{} i i=1 ( x i = x i x i 1 ) ( ξ i ) f(x)

: a = x 0 < x 1 < < x 5 < x 6 = b [a, b] 6 S(, {ξ i }) = f(ξ i ) x i i=1 ( x i = x i x i 1 )

: a = x 0 < x 1 < < x 5 < x 6 = b [a, b] 6 S(, {ξ i }) = f(ξ i ) x i i=1 ( x i = x i x i 1 ) 12 S(, {ξ i}) = f(ξ i) x i i=1 ( x i = x i x i 1)

: a = x 0 < x 1 < < x 5 < x 6 = b [a, b] 6 S(, {ξ i }) = f(ξ i ) x i i=1 ( x i = x i x i 1 ) S(, {ξ i }) = 25 i=1 f(ξ i ) x i ( x i = x i x i 1)

: a = x 0 < x 1 < < x 5 < x 6 = b [a, b] 6 S(, {ξ i }) = f(ξ i ) x i i=1 ( x i = x i x i 1 ) S(, {ξ i }) = 49 i=1 f(ξ i ) x i ( x i = x i x i 1)

: a = x 0 < x 1 < < x 5 < x 6 = b [a, b] 6 S(, {ξ i }) = f(ξ i ) x i i=1 ( x i = x i x i 1 ) lim S(, {ξ i}) 0

f(x) : [a, b] ( ) [a, b] S(, {ξ i }) σ f(x) [a, b] ( ) b ( ) f(x)dx = σ = lim S(, {ξ i}) 0 a [a, b] f(x) 0 0

f(x) : [a, b] ( ) [a, b] S(, {ξ i }) σ f(x) [a, b] ( ) b ( ) f(x)dx = σ = lim S(, {ξ i}) 0 a [a, b] f(x) 1 2 ( )

f(x) ( ) f(x) [a, b] ξ i [x i 1, x i ] S(, {ξ i }) f(x) = { x (x 0) 1 (x = 0) [ 1, 1]

Riemann f(x) = x (0 x 1) : 0 = x 0 < x 1 < < x n 1 < x n = 1 x 0 = 0, x 1 = 1 n, x 2 = 2 n,..., x n 1 = n 1 n, x n = 1 ξ i = x i [x i 1, x i ], x i = x i x i 1 = 1 n S(, {ξ i }) n n i S(, {ξ i }) = f(ξ i ) x i = n 1 n i=1 i=1 = 1 n(n + 1) 1 n2 2 2 (n ) f(x) = sin x ξ i

( ) f(x) I F(x) f(x) ( ) a, b I b a f(x)dx = F(b) F(a) ξ i π 0 sin x dx = ( cos(π)) ( cos(0)) = 2

f(x) : [a, b] F(x) : F (x) = f(x) ( ) F(x) F(b) F(a) f(x) b a f(x)dx = [ F(x) ] b = F(b) F(a) a f(x) x = a, x = b x S

f(x) x = a, x = b x S S = b a f(x)dx b a f(x)dx = F(b) F(a) ( F (x) = f(x) )

( ) ( ) ϵ-δ ( ) ϵ-δ http://www7b.biglobe.ne.jp/~h-kuroda/pdf/text_calculus.pdf Wikimedia Commons GFDL