II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

Similar documents
Untitled

b3e2003.dvi



Gmech08.dvi

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

i

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {


微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

pdf

i 18 2H 2 + O 2 2H 2 + ( ) 3K

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2


ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

第1章 微分方程式と近似解法

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)


.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

Part () () Γ Part ,

II 2 II

meiji_resume_1.PDF

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Microsoft Word - 11問題表紙(選択).docx

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

量子力学 問題


x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

all.dvi

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0


1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0

A

Contents 1 Jeans (

r III... IV.. grad, div, rot. grad, div, rot 3., B grad, div, rot I, II ɛ-δ web page (

Korteweg-de Vries

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

液晶の物理1:連続体理論(弾性,粘性)

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

プログラム

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )


KENZOU Karman) x

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

構造と連続体の力学基礎

untitled

f (x) x y f(x+dx) f(x) Df 関数 接線 x Dx x 1 x x y f f x (1) x x 0 f (x + x) f (x) f (2) f (x + x) f (x) + f = f (x) + f x (3) x f

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

TOP URL 1

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1


I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

05Mar2001_tune.dvi

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

Gmech08.dvi

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +


64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

基礎数学I

第5章 偏微分方程式の境界値問題

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y


1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

Note.tex 2008/09/19( )

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j


( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

Transcription:

II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier Stokes 1 balance law t(ρu i) + X j j(ρu iu j) = F (ex) i ip + X j jτ ij τ ij = µ ( iu j + ju i) ρ ( t + u ) u = F (ex) p + µ u ( 1) 2 u u u t Du Dt 3 Navier Stokes ρ Du Dt = ρg p + µ 2 u div u = ( 2) ( 3) 3 g = (g sin θ,, g cos θ) ( 2)( 3) 4 L U Reynolds df dx = lim f(x + x) f(x) x x f(x + x) f(x) = df x ( x ) ( 4) dx

II 29 7 2 ( 4) x r x r f(r + r) f(r) = (grad f) r ( 5) r grad f f (gradient) ( 5) f(r + r) f(r) = f f f x + y + x y z z f ( 8) u grad u 2 Laplace Laplacian 2 f = 2 f = div grad f ( 11) ( 7) f = ( x 2 + y 2 + z) 2 f ( 12) x f grad f = y f z f x / x ( 6) = e x x + e y y + e z z grad f = f ( 6) ( 7) ( 8) ( 11) u = div(grad u) ( 13) 2 grad u Laplacian 5 (pq) p q u u divergence rotation : div u = u ( 9) : rot u = u ( 1) lim u = rot rot u + grad div u = ( u) + ( u) ( 14) div u = 1 r = x y = r cos θ r sin θ ( 15) z z 2 A B r A x z

II 29 7 3 OA = r ( 15) B (r + r) cos(θ + θ) OB = (r + r) sin(θ + θ) = r + r z + z r r = r r r r + θ + r θ z z = cos θ r sin θ sin θ r + r cos θ θ + r ( 16) 1 ( 16) e r = cos θ sin θ, e θ = sin θ cos θ, e z = ( 17) 1 r = e r r + re θ θ + e z z ( 16 ) f f(b) f(a) = (grad f) r ( 5 ) grad f ( 5 ) ( 16 ) f(b) f(a) = f(r + r, θ + θ, z + z) f(r, θ, z) = f f f r + θ + r θ z z e r grad f = r f re θ grad f = θ f e z grad f = z f ( 19a) ( 19b) ( 19c) ( 19) grad f grad f = e r r f + e θ r θf + e z z f. ( 2) 6 r ( 17) 3 {e r, e θ, e z} r 9 = e r r + e θ r θ + e z z ( 21) 7 {e r, e θ, e z} e r e θ = e z, e θ e r = e z, e θ e z = e r, e z e θ = e r, e z e r = e θ, e r e z = e θ {e x, e y, e z } r e r e θ r θ e r = e θ, θ e θ = e r. ( 18) ( 2) ( 19) ( 2) f = ( r) f f f + ( θ) + ( z) r θ z ( 15) r = p x 2 + y 2, θ = tan 1 y x r 2 3 2 x r = 4 y 5 p x/ p 3 2 3 x 2 + y 2 x 2 + y 2 = 4y/ p cos θ x 2 + y 2 5 = 4sin θ5 z ( 2) 8 ( 18) u u = u r e r + u θ e θ + u z e z ( 22)

II 29 7 4 u r = u r (r, θ, z) u θ = u θ (r, θ, z) u z = u z (r, θ, z) ( 21) div u ( div u = e r r + e ) θ r θ + e z z u = e r r (u r e r + u θ e θ + u z e z ) + e θ r θ (u r e r + u θ e θ + u z e z ) + e z z (u r e r + u θ e θ + u z e z ) ( 23) rot u ( rot u = e r r + e ) θ r θ + e z z (ue z ) = e r r (ue z ) + e θ r θ(ue z ) + e z z (ue z ) = e r ( r u) e z + + = u r e θ 1 u = v e θ, v = v(r) ( 27) θ e r e θ θ ( 18) θ (u r e r + u θ e θ + u z e z ) = ( θ u r ) e r + u r θ e r + ( θ u θ ) e θ + u θ θ e θ + ( θ u z ) e z = ( θ u r u θ ) e r + ( θ u θ + u r ) e θ + ( θ u z ) e z {e r, e θ, e z } e θ r θ (u r e r + u θ e θ + u z e z ) = θu θ + u r r ( 24) ( 23) div u = r u r + u r r + 1 r θu θ + z u z ( 25) e r e θ θ ( 25) u r /r ( 23) rot u = u u u = ue z, u = u(r) ( 26) θ u θ = rot u = ( rv + v/r) e z Laplacian ( 11) ( 14) ( 3) div u = ( 25) r u r + u r r + 1 r θu θ + z u z = ( 28) balance law balance law ( 28) balance law ρ = const. 6 = r e r = r + r +e r = θ e θ = θ + θ +e θ = z e z = z + z +e z

II 29 7 5 ( ) ( ) S[( )] S[( )] S[( )] = r θ z S[( )] = (r + r) θ z 12 r θ z u = ue r, u = u(r, t); ρ = ρ(r, t) t(rρ) + r(rρu) = +(u r t) S[( )] = +r u r r θ z t (u r t) S[( )] = (r + r) u r r+ r θ z t [ ] ( ) ( ) = ρ ( ) r u r r (r + r) u r r+ r θ z t = ρ (r + r) u r r+ r r u r r r ρ (ru r) r V t r V = (r + 12 ) r r θ z V t r + 1 2 r ( 29) 2 (ρ V ) t+ t = (ρ V ) t [ 1 + ρ r r (ru r ) + 1 ] r θu θ + z u z V t (ρ V ) t+ t = (ρ V ) t ( 28) 11 ( 28) Navier Stokes Euler Navier Stokes u 2 46 13 Navier Stokes ( 1) z? : u = (u, v, w) ( 1) u v zw = Euler Navier Stokes

II 29 7 6 x w = 14 Navier Stokes ( 2) x? 15 θ ( 2) u = (u,, ) z =, z = H Navier Stokes 2 16 x = ±L/2 +y u = (, v, ) y = y min y = y max p atm v x ODE U 17 y = y = H x = x min p H x = x max p L (< p H ) u = (u,, ) y y = const. u : : u = ( 3) U : u = U ( 31) : y u = ( 32) u = (,, w) y = const. x = const. 18 z = z = H x U 2 (x min, H) (x max, H) p atm x y Reynolds Reynolds p.161

II 29 7 7 Hagen Poiseuille Hagen Poiseuille z ( 15) = e r r + e θ r θ + e z z ( 21 ) z u = ue z ( 33) ( 21) ( 33) div u = u = z u z u = u z ( 34) ( 35) t θ u r : u = u(r). Navier Stokes ( 1) [ ( 1) ] = ρ (u )u = ρ u z ue z = = ( rot u = e r r + e ) θ r θ + e z z (ue z ) = e r r (ue z ) = ( r u) e θ ( 36) u = rot rot u + grad div u ( = e r r + e ) θ r θ + e z z ( ) ( r u)e θ + = e r r (( r u) e θ ) + e θ r θ (( r u) e θ ) = e r ( 2 r u) e θ + e θ r ( ( ru)e r ) = ( 2 r u + r 1 r u ) e z ( 37) p [ ( 1) ] = p + µ u = (e r r p + e z z p) + µ ( 2 r u + r 1 r u ) e z r : = r p ( 38) z : = z p + µ ( 2 r u + r 1 r u ) ( 39) u = u(r) ( 39) r d/dr 19 Navier Stokes ( 33) ( 38)( 39) ( 37) u 2 Laplacian ( 33) e z ( 37) ( 33) ( 38) p r ( 39) µ ( 2 r u + r 1 r u ) = z p ( 39 ) z r ( 39 ) p z 1 L p H, p L z p = p H p L L ( 39) d 2 u du 2 + r 1 dr dr = p H p L µl ( 4) 2 ODE u r a

II 29 7 8 2 ( 4) u r=a = ( 41) u = A log r + B p H p L 4µL r2 ( 42) ( 41) u A, B u 46.1 Q = u ds = a u 2πrdr ( 4) Q Q = p H p L L πa4 8µ (46.8) Hagen Poiseuille (46.8) 21 (46.8) Navier Stokes ( div u = u = e r r + e ) θ r θ + e z z (ve θ ) = e r r (ve θ ) + e θ r θ(ve θ ) = e r ( r v)e θ + e θ r ( ve r) = ( 44) ( 43) ( 14) u u = ( r 2 v + r 1 r v v ) r 2 e θ ( 45) [Navier Stokes ] = p + µ u = e r r p + µ ( r 2 v + r 1 r v v ) r 2 e θ u = (v/r) θ [Navier Stokes ] = ρ ( t + u )u = ρ t (ve θ ) + ρv r θ(ve θ ) = ρ( t v)e θ ρv2 r e r r : ρv2 = r p ( 46) r θ : ρ t v = µ ( r 2 v + r 1 r v v ) r 2 ( 47) r d/dr ( 15) e θ u = ve θ, v = v(r, t); p = p(r, t) ( 43) 22 ( 45) 23 Navier Stokes ( 46)( 47) ( 37) ( 45) Laplacian v/r 2 ( 43) e θ θ

II 29 7 9 u = ve θ, v = Γ 2πr (19.9) 9 27 (19.9) z r = (19.9) Euler Navier Stokes δ δ νt (46.13) δ 24 t δ 2 /ν ν t δ ν a t b (46.13) a = b = 1/2 ( 48) (19.9) Navier Stokes v = Γ 2πr f(s), s = r νt ( 49) ( 47) s r, t, ν v = κ/r κ = Γ/(2π) Γ 7/17 v t = Γ s df 2πr t ds = Γ 4π df νt 3 ds ( ) d Γ f + Γ s df dr 2πr 2πr r ds = Γ 2πr 2 f + Γ 2πr df νt ds ( ) v r v r = 2 v r 2 = r = Γ πr 3 f Γ πr 2 νt df ds + Γ d 2 f 2πrνt ds 2 ( 47) d 2 ( f 1 ds 2 + 2 s 1 ) df s ds = ( 5) 2 ODE ( 5) df/ds = g f s= = f t= =, f s= = f t= = 1 ( 5) v = f = 1 e s2 /4 Γ [ )] 1 exp ( r2 2πr 4νt ( 51) ( 51) ( 49) s PDE ODE ( 51) v r 2 νt r/ νt = 2.2418 (19.9) r < 2 νt 2 νt (46.13)

II 29 7 1 25 (x, z) y = < y < + t = +x U u = U (1 erfη), η = y 2 νt (46.11) : Fourier (46.11) ω z = u y = U ) exp ( y2 πνt 4νt ( 52) ( 52) y (46.11) ( 52) (46.13) Burgers ( 51) r z ( 43) u = ve θ + αze z βre r ( 53) Navier Stokes α β v = v(r), p = p(r, z) div u = 2β + α β = 1 2 α 2 4 (46.13) 4 δ νt Navier Stokes z u ( 45) r d/dr u u ( α 2 = 4 r v2 r ) e r α ( r dv ) 2 dr + v e θ + α 2 ze z ( ) α 2 r : ρ 4 r v2 = r p ( 54) r z : ρα 2 z = z p ( 55) θ : αρ ( r dv ) 2 dr + v ( d 2 v dv = µ 2 + r 1 dr dr v ) r 2 ( 56) ( 56) (19.9) v = Γ 2πr f(r) ( 57) ( 49) f s r v = Γ [ ( 1 exp α 2πr 4ν r2)] ( 58) ( 51) ( 51) ( 53)( 58) Burgers 26 Navier Stokes ( 53) ( 56) Burgers ( 58) 46.3

II 29 7 11 (46.13) t x x/u x δ νx U ( 59) 2 4 L ( 59) δ max νl ν U = L UL Reynolds Re = UL ν ( 6) δ max L Re ( 59 ) ( 59 ) Reynolds L 27 U = 1.5 m/s L = 1 cm Reynolds ( 59 ) ( 59) Reynolds 1 1 ( 59) 48.2 ( 59)