三石貴志.indd

Similar documents
<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

ver.1 / c /(13)

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

通信容量制約を考慮したフィードバック制御 - 電子情報通信学会 情報理論研究会(IT) 若手研究者のための講演会

GJG160842_O.QXD

小塚匡文.indd

ばらつき抑制のための確率最適制御

CVaR

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m


f(x) = e x2 25 d f(x) 0 x d2 dx f(x) 0 x dx2 f(x) (1 + ax 2 ) 2 lim x 0 x 4 a 3 2 a g(x) = 1 + ax 2 f(x) g(x) 1/2 f(x)dx n n A f(x) = Ax (x R

untitled

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

tnbp59-21_Web:P2/ky132379509610002944

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

ct_root.dvi

I , : ~/math/functional-analysis/functional-analysis-1.tex

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

I II III IV V

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

抄録/抄録1    (1)V

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25


note1.dvi

研修コーナー

パーキンソン病治療ガイドライン2002

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%


128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server


M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin


newmain.dvi


知能と情報, Vol.29, No.6, pp

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

2011de.dvi

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2


Part () () Γ Part ,

II

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

1 c Koichi Suga, ISBN


Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

,398 4% 017,

F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t + αβ G : α + β = a, αβ = b F = 0 F (t) = 0 t α, β G t F = 0 α, β G. α β a b α β α β a b (α β)

ohpr.dvi

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

A

本文/目次(裏白)

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

「産業上利用することができる発明」の審査の運用指針(案)

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )


(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

keisoku01.dvi

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

数学概論I

第5章 偏微分方程式の境界値問題

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

xia2.dvi

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

The Empirical Study on New Product Concept of the Dish Washer Abstract

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

ŠéŒØ‘÷†u…x…C…W…A…fi…l…b…g…‘†[…NfiüŒå†v(fl|ŁŠ−Ù) 4. −mŠ¦fiI’—Ÿ_ 4.1 −mŠ¦ŁªŁz‡Ì„v”Z

Run-Based Trieから構成される 決定木の枝刈り法

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

Microsoft Word - 表紙.docx

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2

_TZ_4797-haus-local

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

生活設計レジメ

I II III 28 29




4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

Transcription:

流通科学大学論集 - 経済 情報 政策編 - 第 21 巻第 1 号,23-33(2012) SIRMs SIRMs Fuzzy fuzzyapproximate approximatereasoning reasoningusing using Lukasiewicz Łukasiewicz logical Logical operations Operations Takashi Mitsuishi * SIRMs SIRMs SIRMs SIRMs I. Zadeh 1;2) Mamdani 3) Mamdani -- 7) t- t- 16) t-t- 8) single input rule modules SIRMs IF-THEN 4;5) SIRMs T-S IF-THEN SIRMs 6) * 流通科学大学商学部 651-2188 神戸市西区学園西町 3-1 (2012 年 3 月 30 日受理 ) C 2012 UMDS Research Association

24 三石貴志 SIRMs t- t- 9;10;11;12) IF-THEN IF-THEN SIRMs II. SIRMs 1. R n n. ẋ(t) =f(x(t),u(t)). (1) f : R n R R n f M f > 0 (v 1,v 2 ) R n R f(v 1,v 2 ) M f (v 1 + v 2 + 1) x(t) u(t) u(t) =ρ(x(t)) r x 0 B r = {x R n ; x r} T 10) 1 ρ : R n R, x 0 B r. ẋ(t) =f(x(t),ρ(x(t)))

ウカシェヴィッツの多値論理演算を用いた SIRMs ファジィ推論法 25 x(0) = x 0 [0,T] x(t, x 0,ρ) (t, x 0 ) [0,T] B r x(t, x 0,ρ). r 2 > 0 { } Φ= ρ : R n R;, sup ρ(u) r 2 u R n, ab. a t [0,T],x 0 B r ρ Φ x(t, x 0,ρ) r 1. r 1 = e Mf T r +(e Mf T 1)(r 2 + 1). (2) b ρ 1,ρ 2 Φ. t [0,T], x 0 B r x(t, x 0,ρ 1 ) x(t, x 0,ρ 2 ) elf (1+Lρ 1 )t 1 1+L ρ1 sup u [ r 1,r 1] n ρ 1 (u) ρ 2 (u), (3) L f, L ρ1 f, ρ 1 2. 1 u(t) = ρ(x(t)) t [0,T] x = (x 1,x 2,,x n )=(x 1 (t),x 2 (t),,x n (t)) = x(t) ρ IF-THEN SIRMs M F ρ M F ρ F T J = w(x(t, ζ, ρ F ),ρ F (x(t, ζ, ρ F )))dtdζ (4) B r 0 w : R n R R J ρ F B r T J M 4 M F 1 M {F k } k N MF k F M(k ) sup ρ F k(x) ρ F (x) 0(k ) (5) x [ r 1,r 1] n T F M J = w(x(t,ζ,ρ F ),ρ F (x(t,ζ,ρ F )))dtdζ B r 0 1. M

26 三石貴志 J M (t, ζ) [0,T] B r 5 1b 56 1a lim x(t, ζ, ρ F k) x(t, ζ, ρ F) =0 (6) k lim ρ F k(x(t, ζ, ρ F k)) = ρ F(x(t,ζ,ρ F )) (7) k w : R n R R 67 14;15) J M 3. (Single Input Rule Modules) 1 u(t) =ρ(x(t)) SIRMs SIRM-1 : {R 1 j : if x 1 = A 1 j then y = C 1 j } m1 SIRM-i : {R i j : if x i = A i j then y = C i j} mi (8) SIRM-n : {R n j : if x n = A n j then y = C n j } mn n x 1,x 2,...x n m i (i =1, 2,...,n) y x SIRMs A i j (x i) Cj i(y) (i =1, 2,...,n; j =1, 2,...,m i) SIRM-i j A i j Ci j x i y A i = (A i 1,A i 2,...,A i m i ), C i =(C i 1,C i 2,...,C i m i ) (i =1, 2,...,n), A = (A 1, A 2,...,A n ), C =(C 1, C 2,...,C n ). A i (i =1, 2,...,m i ) SIRM-i A C (A, C) SIRMs8

ウカシェヴィッツの多値論理演算を用いた SIRMs ファジィ推論法 27 4. SIRMs t [0,T] x = (x 1,x 2,...,x n ) R n (A, C)SIRMs8 ρ SIRMs 4) 1: SIRM-i j Rj i α i j(x i,y)=a i j(x i ) C i j(y) (j =1, 2...,m i ; i =1, 2,...,n). A i j(x i ) C i j(y) =(A i j(x i )+C i j(y) 1) 0, C i j (y) (1 Ai j (x i)) 0 0 2: 1 SIRM-i Rj i m i β i (x i,y)= αj(x i i,y) j =1, 2 (i =1, 2,...,n). α i 1(x i,y) α i 2(x i,y)=(α i 1(x i,y)+α i 2(x i,y)) 1, 3: SIRM-i yβi (x i,y)dy γ i (x i )= βi (x i,y)dy. SIRMs x 1,x 2,...,x n ( SIRM-i) d i (i =1, 2,,n) SIRM-i d i (i =1, 2,,n) 1 A C d =(d 1,d 2,...,d n ) 4: d ρ ACd (x) = d i γ i (x i ).

28 三石貴志 ρ x A, C d III. SIRMs (A, C) 1. r>0 r 2 > 0 T 1 2 r 1 C[ r 1,r 1 ] C[ r 2,r 2 ] [ r 1,r 1 ][ r 2,r 2 ] ij > 0(i =1, 2,...,m; j =1, 2,...,n) 2 F ij = {µ C[ r 1,r 1 ]; 0 µ(x) 1 for x [ r 1,r 1 ], µ(x) µ(x ) ij x x for x, x [ r 1,r 1 ]} G = {µ C[ r 2,r 2 ]; 0 µ(y) 1 for y [ r 2,r 2 ]}. A i j F ij Cj i G F ij G ij F ij G C[ r 1,r 1 ] C[ r 2,r 2 ] i =1, 2,...,n j =1, 2,...,m i F ij C[ r 1,r 1 ] G 9) n m i L ( = F ij G ). L (A, C) SIRMs8 15) 2 L d i 1 4) 1 d i (i =1, 2,,n) D { } D = d =(d 1,d 2,...,d n ) R n ; i =1, 2,...,n, d i (0, 1), d i 1

ウカシェヴィッツの多値論理演算を用いた SIRMs ファジィ推論法 29 L = L D. d L (A, C,d) 3 0 δ>0 { L δ = (A, C,d) L; i =1, 2,...,n, x [ r 1,r 1 ] n, r2 r 2 β i (x i,y)dy δ }. (9) δ L 0 x 0 L δ (A, C,d) L δ 3 L δ {(A k, C k,d k )} L (A, C,d) L i =1, 2,...,n; j =1, 2,...,m i A j k i A j i = C j k i C j i = sup x i [ r 1,r 1] sup C j i y [ r 2,r 2] A j i k (xi ) A j i (x i) 0 k (y) C j i (y) 0 x [ r 1,r 1 ] n {(A k, C k,d k )} L δ (A, C,d) L i =1, 2,...,n r2 β i (x i,y)dy = lim r k 2 r2 m i r 2 r2 m i A i j(x i ) Cj(y)dy i = lim k r 2 A i j k (xi ) C i j k (y)dy δ (A, C,d) L δ. L δ L IV. 1 u(x) =ρ ACd (x) t [0,T] x =(x 1,x 2,,x n )= (x 1 (t),x 2 (t),,x n (t)) = x(t) SIRMs84. SIRMs SIRMs 9 L δ (A, C,d) ρ ACd (x) = d i r2 r 2 yβ i (x i,y)dy r2 r 2 β i (x i,y)dy

30 三石貴志 m i β i (x i,y)= A i j(x i ) Cj(y) i (i =1, 2,...,n) ρ ACd 4 (A, C,d) L δ ab. a ρ ACd [ r 1,r 1 ] n. b x [ r 1,r 1 ] n ρ ACd (x) r 2. a ρ ACd 4. α i j, β i, γ i i =1, 2,...,n; j =1, 2,...,m i x =(x i ) n,x =(x i ) n [ r 1,r 1 ] n αj(x i i,y) αj(x i i,y) = A i j(x i ) Cj(y) i A i j(x i ) Cj(y) i 1 { A i 2 j(x i ) A i j(x i ) + A i j(x i )+Cj(y) i 1 A i j(x i )+Cj(y) i 1 } A i j(x i ) A i j(x i ) ij x i x i 1 α i j ij β i i =1, 2,...,nm i 1 m i 1 m i 1 αj(x i i,y) αj(x i i,y) (m i 1) x i x i. (mi 1) m i 1 m i 1 αj(x i i,y) αm i i (x i,y) αj(x i i,y) αm i i (x i,y) = 1 m i 1 m i 1 2 αj(x i i,y)+αm i i (x i,y)+1 αj(x i i,y)+αm i i (x i,y) 1 m i 1 m i 1 α i j(x i,y)+αm i i (x i,y)+1 αj(x i i,y)+αm i i (x i,y) 1 m i 1 m i 1 αj(x i i,y) αj(x i i,y) + αi m i (x i,y) αm i i (x i,y) (mi 1) x i x i + imi x i x i = ( (mi 1) + imi ) x i x i m i β i (x i,y)= αj(x i i,y) γ i (x i ) γ i (x i ) 4r 2 3 m i β i (x i,y) β i (x i,y) δ 2

ウカシェヴィッツの多値論理演算を用いた SIRMs ファジィ推論法 31 12) d i < 1 ρ ACd (x) ρ ACd (x ) 4r 2 3 δ 2 d i γ i (x i ) γ i (x i ) m i β i (x i,y) β i (x i,y) 4r 2 3 δ 2 { mi ( (mi 1) + imi ) } x x ρ ACd [ r 1,r 1 ] n b 4 1 ρ ACd Φ [ r 1,r 1 ] n R n [ r 1,r 1 ] n R n 13) ρ ACd 1 1 x(t, x 0, ρ ACd ) 1b3 ρ ACd ρ ACd R n ρ ACd ρ ACd L δ 5 4 T J = w(x(t,ζ,ρ ACd ),ρ ACd (x(t,ζ,ρ ACd )))dtdζ B r 0 9 L δ 1 L δ 3 ρ ACd L δ i =1, 2,...,n; j =1, 2,...,m i A i k j (xi ) Cj i k (y) A i j (x i ) Cj(y) i A i k j (xi ) A i j(x i ) + Cj i k (y) C i j (y), m i m i αj i k (xi,y) αj(x i i,y) = m i m i αj i k (xi,y) 1 αj(x i i,y) 1 ρ Ak C k d k(x) ρ ACd(x) 1 n m i 3 2r δ 2 2 A i k j (xi ) A i 2 j(x i ) + r 2 r2 m i Cj i k (y) C i j (y) dy r 2 r2 m i +2r 2 y Cj i k (y) C i j (y) dy 2 + r 2 d k i d i r 2

32 三石貴志 L δ (A k, C k,d k ) (A, C,d)(k ) lim sup ρ Ak C k d k(x) ρ ACd(x) =0 x [ r 1,r 1] n k ρ ACd (A, C,d) SIRMs V. SIRMs SIRMs SIRMs 1 SIRMs 1) L. A. Zadeh, Fuzzy Sets, Information and Control, vol. 8, pp.338 353. 1965. 2) L. A. Zadeh, Fuzzy algorithms, Information and Control, 12, pp.94 102, 1968. 3) E. H. Mamdani, Application of fuzzy algorithms for control of simple dynamic plant, Proc. IEE 121, No. 12, pp.1585 1588, 1974. 4),,, vol. 9, no. 5, pp.699 709, 1997. 5), SIRMs,, vol. 10, no. 3, pp.522 531, 1998. 6) H. Seki, H. Ishii and M. Mizumoto, On the generalization of single input rule modules connected type fuzzy reasoning method, Proc. of Joint 3rd International Conference on Soft Computing and Intelligent Systems and 7th International Symposium on advanced Intelligent Systems (SCIS&ISIS 2006), pp.30 34, 2006.

ウカシェヴィッツの多値論理演算を用いた SIRMs ファジィ推論法 33 7) IV--, pp.9 13, 1990. 8) M. Mizumoto, Fuzzy Conditional lnference under Max- Composition, Information Sciences, 27(2), 183 209, 1982. 9) T. Mitsuishi, K. Wasaki, J. Kawabe, N. P. Kawamoto, Y. Shidama, Fuzzy optimal control in L 2 space, In: Proc. 7th IFAC Symposium Artificial Intelligence in Real-Time Control, pp.173 177, 1998. 10) T. Mitsuishi, J. Kawabe, K. Wasaki and Y. Shidama, Optimization of Fuzzy Feedback Control Determined by Product-Sum-Gravity Method, Journal of Nonlinear and Convex Analysis, Vol. 1, No. 2, pp.201 211, 2000. 11) T. Mitsuishi, Y. Shidama, Optimal Control Using Functional Type SIRMs Fuzzy Reasoning Method, In: T. Honkela et al. (Eds.): ICANN 2011, Part II, LNCS 6792, pp.237 244, Springer, Heidelberg 2011. 12) T. Mitsuishi, T. Terashima, T. Homma, Y. Shidama, Fuzzy Approximate Reasoning Using Single Input Rule Modules in L Space, Proc. of IEEE AFRICON, CD-ROM, 2011. 13) R. K. Miller and A. N. Michel, Ordinary Differential Equations, Academic Press, New York, 1982. 14) F. Riesz, B. Sz.-Nagy, Functional Analysis, Dover Publications, New York, 1990. 15) N. Dunford and J.T. Schwartz, Linear Operators Part I: General Theory, John Wiley & Sons, New York, 1988. 16) G. Metcalfe, N. Olivetti, D. Gabbay, Proof Theory for Fuzzy Logics, Springer-Verlag, 2009.