untitled

Similar documents
1 12 CP 12.1 SU(2) U(1) U(1) W ±,Z [ ] [ ] [ ] u c t d s b [ ] [ ] [ ] ν e ν µ ν τ e µ τ (12.1a) (12.1b) u d u d +W u s +W s u (udd) (Λ = uds)

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

untitled

[ ] [ ] [ ] [ ] [ ] [ ] ADC

Mott散乱によるParity対称性の破れを検証

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

meiji_resume_1.PDF

untitled

TOP URL 1

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x


TOP URL 1

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π


A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

Muon Muon Muon lif

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

LLG-R8.Nisus.pdf

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

Drift Chamber

all.dvi

Microsoft Word - 章末問題

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

25 3 4

基礎数学I

,,..,. 1

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

TOP URL 1

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

untitled

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

note4.dvi

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

液晶の物理1:連続体理論(弾性,粘性)

Part () () Γ Part ,

数学Ⅱ演習(足助・09夏)

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

chap9.dvi

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Note.tex 2008/09/19( )

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

201711grade1ouyou.pdf

2000年度『数学展望 I』講義録


1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

main.dvi

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

4‐E ) キュリー温度を利用した消磁:熱消磁

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )


pdf

I II

量子力学 問題

( ) ( )

: , 2.0, 3.0, 2.0, (%) ( 2.

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co


1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

gr09.dvi

2011de.dvi


本文/目次(裏白)

構造と連続体の力学基礎

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

untitled

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

QMI_10.dvi

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

Gmech08.dvi

Ł\”ƒ-2005

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

第90回日本感染症学会学術講演会抄録(I)

NETES No.CG V

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

soturon.dvi

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

Transcription:

BELLE TOP 12

1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3 BELLE..................... 13 2.3.1........................ 13 2.3.2........................ 15 2.3.3 de/dx.............................. 15 2.3.4 ACC............. 16 3 TOP 19 3.1 TOP......................... 19 3.2 TOP......................... 2 3.3 TOP...................... 23 3.3.1 TOP............................. 23 3.3.2.............................. 23 3.3.3............................. 24 4 28 4.1 TOP................ 28 4.1.1......................... 28 4.1.2........................... 28 4.2................................. 33 4.3................................. 35 4.3.1 ADC TDC...................... 35 4.3.2.......................... 36 4.3.3......................... 36 4.4................................. 39 1

4.4.1................... 39 4.4.2.......................... 41 4.4.3........................... 43 4.4.4.............................. 46 4.4.5...................... 53 5 58 A 59 B 61 2

1 CP (Charge) (Parity) CP 196 K 3 CP 1973 KM 1 CP B K CP B B- KEKB B B BELLE B B 2 BELLE 2 BELLE 3 TOP 4 TOP 5 3

2 BELLE 2.1 BELLE 2.1.1 6 2 2 3 ( )( )( ) u c t (2.1) d s b u c t d s b W + W ( ) d i = U ij d j (2.2) i d 1 =d d 2 =s d 3 =b U ij 3 3 U U=1 1973 3 - CP [1] 3 3 - V ud V us V ub V V cd V cs V cb (2.3) V td V ts V tb λ=sinθ c (θ c :Cabbibo 4

) λ 3 Wolfenstein 1 λ2 λ Aλ 3 (ρ iη) 2 V λ 1 λ2 Aλ 2 2 + O(λ 4 ) (2.4) Aλ 3 (1 ρ iη) Aλ 2 1 λ A λ =.221 ±.2 A =.839 ±.41 ±.2 (2.5) ρ η b u b c V ub /V cb =.8 ±.3 (2.6) ρ2 + η 2 =.36 ±.14 (2.7) KM - V td V tb + V cdv cb + V udv ub = (2.8) 3 ( ) ( Vcd Vcb φ 1 arg Vud V V td V, φ tb ub 2 arg V td Vtb ), φ 3 arg ( ) Vcd Vcb V ud Vub (2.9) CP 2.1 ρ η CP KM BELLE B CP KM 5

2.1: 2.2: B d - B d 6

2.1.2 B B B - B 2.2 B - B ( ) ( ) i B B = H t B B ) (M ( ) i2 Γ B (2.1) B ( )( ) M 11 i Γ 2 11 M 12 i Γ 2 12 B M 21 i Γ 2 21 M 22 i Γ 2 22 B M Γ M 21 =M 12 Γ 21=Γ 12A M 11 M 22 Γ 11 Γ 22 CPT B H B = B (CPT) 1 H(CPT) B = B H B M 11 =M 22 =M Γ 11 =Γ 22 =Γ 2.1 ( ) ( )( ) B M i H = Γ M 2 12 i Γ 2 12 B B M12 i 2 Γ 12 M i Γ B 2 (2.11) (2.12) M Γ B B M 12 B B Γ 12 B B B B M 1 M 2 E 1 E 2 B 1 B 2 E 1 =(M i 2 Γ) pq M 1 i 2 Γ 1 (2.13) B 1 = B 2 = E 2 =(M i 2 Γ) + pq M 2 i 2 Γ 2 (2.14) p q p 2 + q 2 B p 2 + q B (2.15) 2 p q p 2 + q 2 B + p 2 + q B (2.16) 2 7

p =(M 12 + i 2 Γ 12) 1/2 (2.17) q =(M 12 i 2 Γ 12) 1/2 (2.18) M M 1 + M 2, M M 1 M 2 (2.19) 2 Γ 1 =Γ 2 = Γ (2.2) t= B B t=t B (t) B (t) B (t) = f + (t) B + q p f B (2.21) B (t) = p q f (t) B + f + B (2.22) { ( ) } ( ) f + = exp i M Γ 1 t cos Mt 2 2 { ( ) } ( ) f = i exp i M Γ 1 t sin Mt 2 2 (2.23) (2.24) 2.1.3 B CP B CP CP f cp t= B ( B ) t f cp f cp H B (t) = f + (t) f cp H B + q p f (t) f cp H B (2.25) f cp H B (t) = f + (t) f cp H B + p q f (t) f cp H B (2.26) CP a fcp a fcp Γ(B (t) f cp ) Γ( B (t) f cp ) Γ(B (t) f cp )+Γ( B (t) f cp ) (2.27) 8

a fcp B f cp B fcp B B ( ) f cp H B =A f cp H B =Ā λ λ = q Ā p A (2.28) 2.25 2.26 f cp H B (t) = A(f + (t)+λf (t) (2.29) f cp H B (t) = p q A(f (t)+λf + (t) (2.3) a fcp = (1 λ 2 )cos( Mt) 2Imλsin( Mt) 1+ λ 2 (2.31) - a fcp t B d 2 q p = V tb V td = exp( 2iφ V tb V M ) (2.32) td 2φ M 2.2 KM B d φ M =φ 1 CP KM (φ D ) A/Ā =1 (2.31) a fcp = Imλsin( Mt) = ±sin2(φ M + φ D )sin( Mt) (2.33) f cp CP a fcp - f cp Jψ/K s φ D = a fcp φ 1 π + π φ 2 D K φ 3 2.2 BELLE BELLE CP 9

1. B ( ) 1/2 2. π ± K ± e ± µ ±.5 3. π γ B 4. B BELLE 2.1 B e/π/k γ K L µ (SVD) (CDC) (CDC) (ACC) (TOF) CsI K L /µ (KLM) 2.1 BELLE 2.3 2.4 (IP) 1

2.3: BELLE 11

2.4: 12

2.3 BELLE 2.3.1 BELLE CP B B J/ψK s B B CP B B J/ψK s B B B B B (bū) b b c s s K J/ψK s K K + B B B J/ψK s B B π/k φ 2 B ππ B Kπ π/k φ 3 B DK B Dπ BELLE π/k 2.5 B K ± K 1.5GeV/c 1.5GeV/c π/k 2.6 B ππ π θ=3 π 3.5GeV/c φ 2 3.5GeV/c π/k TOF ACC CDC de/dx π/k m m p β m = (1/β) 2 1 p (2.34) p CDC β 13

2.5: K ( ) 2.6: B ππ π ( ) π 14

2.3.2 1.2GeV/c (TOF) L 2 L t β V = L t, β = V (2.35) c TOF π/k 2.7 π/k 2.7: π/k 2.3.3 de/dx CDC (de/dx) de/dx de dx = Z { 1 ( ) Kz2 2m ln eβ 2 γ 2 E max β2 A β 2 I 2 δ } (2.36) 2 β K (.37MeVg 1 cm 2 ) z Z A I E max 15

de/dx CDC β BELLE CDC π/k δe/e=5 1GeV/c 2GeV/c 2.8 CDC π/k 2.8: π/k CDC 5 2.3.4 ACC n c/n (v=βc) v c/n 2.9 t (c/n) t v t(=βc t) 2 θ c cosθ c = (c/n) t v t = 1 βn 1 (2.37) 16

β 1/n p th = β th = 1 n mβ thc 1 β 2 th = mc n2 1 (2.38) (2.39) λ2 N =2παL sin 2 θ c /λ 2 dλ (2.4) λ 1 [2] N α L (cm) λ (4nm 6nm) 1cm 1.1 β=1 7.5 2.9: 17

2 (1) (2) (1) BELLE ACC( ) 2.38 2.39 π K ACC 1.2GeV/c π/k n 1.1 1.2 (2) n 1.5 π/k θ c 2.37 β ON/OFF β BELLE BELLE π/k ACC TOP 18

3 TOP 3.1 TOP TOP(Time Of Propagation) θ c (TOP) 3.1 θ c xz z Φ yz y Θ 2 TOP Φ Θ ( Φ) (TOP) 2 TOP (q x,q y,q z ) ( )( ) L 1 TOP = c/n(λ) q z (3.1) [3] L c n(λ) TOP z (θ inc,φ inc ) q x = q xcosθ inc cosφ inc q ysinφ inc + q zsinθ inc cosφ inc (3.2) q y = q x cosθ incsinφ inc + q y cosφ inc + q z sinθ incsinφ inc (3.3) q z = q x sinθ inc + q z dosθ inc (3.4) q x y z z θ c z φ q x = sinθ c cosφ c (3.5) q y = sinθ c sinφ c (3.6) 19

3.1: q z = cosθ c (3.7) Θ Φ Φ=arctan ( qx q z ), Θ=arctan ( qy q z ) (3.8) 3.2 3GeV/c 2m (θ inc =φ inc =9 ) π/k (TOP,Φ) 3.2 TOP TOP 3 TOP 3.3 6mm 2mm 315mm 2

3.2: TOP π/k 13ps 3.3: TOP 21

5µm 5µm Φ x 3.4 Φ x x Φ 3 115mm 2 25mm 2 Φ=.5(deg) Φ 45 3.4: 22

3.3 TOP 3.3.1 TOP 3.1 π/k TOP ( )( ) L 1 TOP = c/n(λ) qz π qz K L(m) =4.9(ns) qz π qz K (3.9) TOP L TOP Φ TOP Φ 3.5 L TOP L 3.6 p p θ c TOP TOF (TOP+TOF) TOF TOF TOF K TOF π 3.3.2 TOP a (θ inc,φ inc,l) b CDC c d e f a Φ 1ps 2ps b d θ inc 1.ps 2ps c θ inc 23

1ps 1ps e f e Φ 3.7 θ inc TOP σ TOP L=2m p=4gev/c σ TOP θ inc Φ 75ps 3.3.3 TOF { ( S = δ(ttop + t TOF ) K π ) } 2 i (σ T ) i i (3.1) TOP N=3 L=2m p=4gev/c θ inc =9 π/k S =6 BELLE 3.8 24

3.5: L TOP L TOP Φ TOP 3.6: p TOP p θ c TOP 25

3.7: TOP ( total) TOP a c e f 26

3.8: TOP π/k BELLE TOP 27

4 4.1 TOP 4.1.1 TOP (1) (2) 1mm (3) σ 1ps (4) ( ) R59-U-- L16 TOP 4.1.2 16mm 16mm.8mm 16mm 16 1mm 4.1 28

4.1: 4.2: 29

2 4.2 1 (Quantum Efficiency : QE) 4.3 4nm 25 [4] 1 9 4.4.6ns 3

4.3: ( ) (mv/w) 31

4.4: 2ns/div 2mV/div 32

4.2 4.5 PLP-1 41nm 1kHz ADC TDC 15ns (Nikon ) 1µm 1 2 ADC TDC 3mV 1/3 4.6 ND 1m (φ5µm) 4.5: 33

4.6: 34

4.3 4.3.1 ADC TDC ADC ADC TDC TDC 4.7 16 4.1 Channel 8 Channel 8 Time(ns) 14 12 Charge(pc) 14 12 1 8 6 4 2 5 1 15 2 25 TDC 1 8 6 4 2 5 1 15 2 25 ADC 4.7: TDC ADC TDC ADC 8 channel ADC TDC channel ADC TDC 1 3.2 1 2 49.9 9 3.17 1 2 45.7 2 3.2 1 2 49.9 1 3.54 1 2 45.7 3 3.23 1 2 5.1 11 3.26 1 2 45.4 4 3.21 1 2 49.9 12 3.17 1 2 46. 5 3.19 1 2 49.8 13 3.31 1 2 46.6 6 3.2 1 2 49.9 14 3.27 1 2 46.1 7 3.24 1 2 49.8 15 3.27 1 2 45.9 8 3.2 1 2 5.1 16 3.28 1 2 45.8 4.1 ADC TDC ADC pc/counts TDC ps/counts 35

4.3.2 HV 8V 8 1 78 (78Hz) 1Hz HV 4.8 15 16 2 1kHz 15ns HV8 8 15 1 9 s 1kHz 78Hz 1 =.117 (4.1) 1kHz 1 1 15 16 1 5 4.3.3 1ns 8mV 4.2 channel channel 1 7.4 9 7.5 2 7.5 1 7.6 3 7.4 11 7.4 4 7.3 12 7.2 5 7.4 13 7.4 6 7.5 14 7.5 7 7.4 15 7.5 8 7.6 16 7.5 4.2 36

Noise(Hz) channel 1 4 35 3 Noise(Hz) channel 2 4 35 3 25 2 15 1 5 7 75 8 85 9 95 25 2 15 1 5 7 75 8 85 9 95 Noise(Hz) channel 3 4 35 3 Noise(Hz) channel 4 4 35 3 25 2 15 1 5 7 75 8 85 9 95 25 2 15 1 5 7 75 8 85 9 95 Noise(Hz) channel 5 4 35 3 Noise(Hz) channel 6 4 35 3 25 2 15 1 5 7 75 8 85 9 95 25 2 15 1 5 7 75 8 85 9 95 Noise(Hz) channel 7 4 35 3 Noise(Hz) channel 8 4 35 3 25 2 15 1 5 7 75 8 85 9 95 25 2 15 1 5 7 75 8 85 9 95 4.8: HV 37

Noise(Hz) channel 9 4 35 3 Noise(Hz) channel 1 4 35 3 25 2 15 1 5 7 75 8 85 9 95 25 2 15 1 5 7 75 8 85 9 95 Noise(Hz) channel 11 4 35 3 Noise(Hz) channel 12 4 35 3 25 2 15 1 5 7 75 8 85 9 95 25 2 15 1 5 7 75 8 85 9 95 Noise(Hz) channel 13 4 35 3 Noise(Hz) channel 14 4 35 3 25 2 15 1 5 7 75 8 85 9 95 25 2 15 1 5 7 75 8 85 9 95 Noise(Hz) channel 15 4 35 3 Noise(Hz) channel 16 4 35 3 25 2 15 1 5 7 75 8 85 9 95 25 2 15 1 5 7 75 8 85 9 95 38

4.4 4.4.1 ND 8 ADC ADC ND 1/2 1/4 1/8 1/16 1/32 1/64 1/4 Entry No Filter 16 14 12 1 No Filter Nent = 1 Mean = 72.66 RMS = 25.65 Entry 1/2 1/2 Nent = 1 Mean = 57.94 14 RMS = 19.78 12 1 8 6 4 2 8 6 4 2 2 4 6 8 1 12 14 16 18 2 ADC(x.3pc) 2 4 6 8 1 12 14 16 18 2 ADC(x.3pc) Entry 1/4 1/4 Nent = 1 12 Mean = 54.97 RMS = 17.98 1 8 Entry 1/8 1/8 Nent = 1 8 Mean = 51.77 RMS = 15.83 7 6 5 6 4 2 2 4 6 8 1 12 14 16 18 2 ADC(x.3pc) 4 3 2 1 2 4 6 8 1 12 14 16 18 2 ADC(x.3pc) Entry 1/16 1/16 Nent = 1 4 Mean = 49.85 RMS = 14.48 35 3 25 Entry 1/32 1/32 Nent = 1 3 Mean = 49.7 RMS = 14.9 25 2 2 15 1 5 2 4 6 8 1 12 14 16 18 2 ADC(x.3pc) 15 1 5 2 4 6 8 1 12 14 16 18 2 ADC(x.3pc) Entry 1/64 1/64 Nent = 1 2 Mean = 49.36 RMS = 13.76 18 16 Entry 1/4 1/4 Nent = 3 3 Mean = 48.16 RMS = 13.65 25 14 12 1 8 6 4 2 2 4 6 8 1 12 14 16 18 2 ADC(x.3pc) 2 15 1 5 2 4 6 8 1 12 14 16 18 2 ADC(x.3pc) 4.9: 8 ADC 39

4.1: ADC ND4 ND64 8 96 ( A ) ADC ND16 ND16 7.5 ND16 4

4.4.2 1µm 4.11 16 1mm σ 4.12 Entry 7 6 5 4 3 2 1 4 6 8 1 12 14 16 18 2 22 24 position(mm) 4.11: 41

sigma(mm).4.35.3.25.2.15.1.5 2 4 6 8 1 12 14 16 channel 4.12: σ 42

4.4.3 4.13 8 TDC ADC vs TDC TDC 75 ADC vs TDC TDC 3 1 TDC TDC ADC TDC TDC = k ADC + t (4.2) k t 4.13 ADC vs TDC TDC 4.14 4.14 HV 8V σ 92ps σ 1ps HV 7V 85V 9V 43

Entry 12 1 TDC_1/16 Nent = 1 Mean = 754 RMS = 5.919 8 6 4 2 7 72 74 76 78 8 82 TDC(x5ps) TDC(x5ps) 82 8 78 76 74 72 7 2 4 6 8 1 12 ADC(x.3pc) 4.13: 8 TDC ADC vs TDC 44

Entry Nent = 739 12 1 8 Mean =.3365 RMS = 3.26 Chi2 / ndf = 1254 / 36 Constant = 994.6 ± 18.88 Mean = -.5356 ±.3316 Sigma = 1.846 ±.2592 6 4 2-6 -4-2 2 4 6 TDC(x5ps) 4.14: TDC ADC vs TDC 45

HV 123ps 84ps 78.5ps HV 8 8 4.15 HV 8V 1ps 9V 9ps HV 8V 9V T.T.S(ps) 16 14 12 1 8 6 4 2 2 4 6 8 1 12 14 16 channel 4.15: HV8 HV9 4.4.4 ADC (Gain) G ADC Q A G = Q/Ae (4.3) 46

e (1.6 1 19 [c]) 8 HV 7 8 85 9V ADC 4.16 HV 9V G =2.36 1 6 HV HV 4.17 Entry HV7 8 Nent = 1 Mean = 12.31 7 6 5 RMS = 4.868 Chi2 / ndf = 142 / 42 Constant = 539.6 ± 7.249 Mean = 25.19 ±.1164 Sigma = 7.387 ±.952 Entry HV8 5 Nent = 1 Mean = 14.18 4 3 RMS = 11.61 Chi2 / ndf = 155.7 / 77 Constant = 236.5 ± 3.574 Mean = 51.85 ±.1971 Sigma = 13.3 ±.1626 4 3 2 1 2 4 6 8 1 12 14 16 18 2 ADC(x.3pc) 2 1 2 4 6 8 1 12 14 16 18 2 ADC(x.3pc) Entry HV85 5 Nent = 1 Mean = 16.32 RMS = 17.42 Chi2 / ndf = 265 / 98 4 Constant = 214 ± 3.65 Mean = 69.15 ±.2244 Sigma = 16.26 ±.1874 3 Entry HV9 4 Nent = 1 Mean = 18.6 35 RMS = 24.2 Chi2 / ndf = 244.9 / 116 Constant = 186 ± 2.658 3 Mean = 91.71 ±.2656 Sigma = 18.72 ±.2214 25 2 2 1 2 4 6 8 1 12 14 16 18 2 ADC(x.3pc) 15 1 5 2 4 6 8 1 12 14 16 18 2 ADC(x.3pc) 4.16: HV 8 ADC 47

gain 1 7 Chi2 / ndf =.575 / 2 Constant = 9.248 ±.5621 Slope =.629 ±.6516 1 6 65 7 75 8 85 9 95 4.17: HV 48

4.18 HV 8V 9V HV 4.18: HV8 HV9 2 δ E δ=a E α A α N V G =(A E α ) N { ( ) α } N V A = KV α N (4.4) N +1 α N K 4.5 log G = a + b log V (4.5) 49

a=log K b=α N HV ( 4.19) log K α N 4.3 α N log K α N log K 1 7.462-15.66 9 4.22-6.7 2 5.22-8.439 1 4.951-8.232 3 5.64-1.17 11 4.839-7.929 4 5.583-1.14 12 5.237-9.56 5 5.558-1.5 13 4.313-6.31 6 4.93-8.12 14 6.214-12.1 7 5.784-1.74 15 7.68-14.51 8 4.928-9.185 16 7.381-15.49 4.3 : α N K 5

log gain channel 1 6.6 6.4 Chi2 / ndf =.3131 / 2 p = -15.66 ± 35.93 p1 = 7.462 ± 12.36 log gain channel 2 6.6 6.4 Chi2 / ndf =.3988 / 2 p = -8.439 ± 34.81 p1 = 5.22 ± 11.97 6.2 6.2 6 6 5.8 5.8 5.6 5.6 5.4 2.8 2.85 2.9 2.95 3 log 5.4 2.8 2.85 2.9 2.95 3 log log gain channel 3 6.6 6.4 Chi2 / ndf =.185 / 2 p = -1.17 ± 27.5 p1 = 5.64 ± 9.3 log gain channel 4 6.6 6.4 Chi2 / ndf =.2965 / 2 p = -1.14 ± 35.93 p1 = 5.583 ± 12.36 6.2 6.2 6 6 5.8 5.8 5.6 5.6 5.4 2.8 2.85 2.9 2.95 3 log 5.4 2.8 2.85 2.9 2.95 3 log log gain channel 5 6.6 6.4 Chi2 / ndf =.1515 / 2 p = -1.5 ± 35.93 p1 = 5.558 ± 12.36 log gain channel 6 6.6 6.4 Chi2 / ndf = 6.483e-5 / 2 p = -8.12 ± 35.93 p1 = 4.93 ± 12.36 6.2 6.2 6 6 5.8 5.8 5.6 5.6 5.4 2.8 2.85 2.9 2.95 3 log 5.4 2.8 2.85 2.9 2.95 3 log log gain channel 7 6.6 6.4 Chi2 / ndf =.2256 / 2 p = -1.74 ± 35.93 p1 = 5.784 ± 12.36 log gain channel 8 6.6 6.4 Chi2 / ndf = 7.614e-5 / 2 p = -8.185 ± 35.93 p1 = 4.928 ± 12.36 6.2 6.2 6 6 5.8 5.8 5.6 5.6 5.4 2.8 2.85 2.9 2.95 3 log 5.4 2.8 2.85 2.9 2.95 3 log 4.19: HV 51

log gain channel 9 6.6 6.4 Chi2 / ndf = 2.786e-5 / 2 p = -6.7 ± 35.93 p1 = 4.22 ± 12.36 log gain channel 1 6.6 6.4 Chi2 / ndf =.235 / 2 p = -8.232 ± 35.93 p1 = 4.951 ± 12.36 6.2 6.2 6 6 5.8 5.8 5.6 5.6 5.4 2.8 2.85 2.9 2.95 3 log 5.4 2.8 2.85 2.9 2.95 3 log log gain channel 11 6.6 6.4 Chi2 / ndf =.2344 / 2 p = -7.929 ± 35.93 p1 = 4.839 ± 12.36 log gain channel 12 6.6 6.4 Chi2 / ndf =.2262 / 2 p = -9.56 ± 22.3 p1 = 5.237 ± 7.574 6.2 6.2 6 6 5.8 5.8 5.6 5.6 5.4 2.8 2.85 2.9 2.95 3 log 5.4 2.8 2.85 2.9 2.95 3 log log gain channel 13 6.6 6.4 Chi2 / ndf = 4.275e-5 / 2 p = -6.31 ± 35.93 p1 = 4.313 ± 12.36 log gain channel 14 6.6 6.4 Chi2 / ndf =.2177 / 2 p = -12.1 ± 24.14 p1 = 6.214 ± 8.3 6.2 6.2 6 6 5.8 5.8 5.6 5.6 5.4 2.8 2.85 2.9 2.95 3 log 5.4 2.8 2.85 2.9 2.95 3 log log gain channel 15 6.6 6.4 Chi2 / ndf =.146 / 2 p = -14.51 ± 35.93 p1 = 7.68 ± 12.36 log gain channel 16 6.6 6.4 Chi2 / ndf =.1499 / 2 p = -15.49 ± 35.93 p1 = 7.381 ± 12.36 6.2 6.2 6 6 5.8 5.8 5.6 5.6 5.4 2.8 2.85 2.9 2.95 3 log 5.4 2.8 2.85 2.9 2.95 3 log 52

4.4.5 8 8 4.4 ND (1) (2) (3) ( ) 7371 1988 15 2.72 2 44525 619 5 1.4 4 2637 194 1.75 8 16377 7.43 16 7465 8.1 32 3745 2.5 64 2578 4 13 4.4 (1) 8 (2) 8 1 (3) 8 2 3 (2)+(3)/(1) HV 4.2 8 8 8 2 (ND16 157 ) 85 8 7 9 ADC vs TDC 4.21 TDC 2 ADC 7 9 TDC 4.22 TDC TDC TDC 53

Cross talk(%) channel 1 1.9.8.7 Cross talk(%) channel 2 1.9.8.7.6.5.4.3.2.1 65 7 75 8 85 9 95.6.5.4.3.2.1 65 7 75 8 85 9 95 Cross talk(%) channel 3 1.9.8.7 Cross talk(%) channel 4 1.9.8.7.6.5.4.3.2.1 65 7 75 8 85 9 95.6.5.4.3.2.1 65 7 75 8 85 9 95 Cross talk(%) channel 5 1.9.8.7 Cross talk(%) channel 6 1.9.8.7.6.5.4.3.2.1 65 7 75 8 85 9 95.6.5.4.3.2.1 65 7 75 8 85 9 95 Cross talk(%) channel 7 1.9.8.7 Cross talk(%) channel 8 1.9.8.7.6.5.4.3.2.1 65 7 75 8 85 9 95.6.5.4.3.2.1 65 7 75 8 85 9 95 4.2: HV 54

Cross talk(%) channel 9 1.9.8.7 Cross talk(%) channel 1 1.9.8.7.6.5.4.3.2.1 65 7 75 8 85 9 95.6.5.4.3.2.1 65 7 75 8 85 9 95 Cross talk(%) channel 11 1.9.8.7 Cross talk(%) channel 12 1.9.8.7.6.5.4.3.2.1 65 7 75 8 85 9 95.6.5.4.3.2.1 65 7 75 8 85 9 95 Cross talk(%) channel 13 1.9.8.7 Cross talk(%) channel 14 1.9.8.7.6.5.4.3.2.1 65 7 75 8 85 9 95.6.5.4.3.2.1 65 7 75 8 85 9 95 Cross talk(%) channel 15 1.9.8.7 Cross talk(%) channel 16 1.9.8.7.6.5.4.3.2.1 65 7 75 8 85 9 95.6.5.4.3.2.1 65 7 75 8 85 9 95 55

4.21: 8 TDC 77 83 2 56

12 Entry channel 7 1 TDC_1/16 Nent = 1 Mean = 775.2 RMS = 6.435 8 6 4 2 7 75 8 85 9 95 1 TDC(x5ps) 12 Entry channel 9 1 TDC_1/16 Nent = 1 Mean = 829 RMS = 6.813 8 6 4 2 7 75 8 85 9 95 1 TDC(x5ps) 4.22: 7 TDC 4.17 TDC 9 TDC 57

5 TOP 1ps 1mm 4.5 HV8 HV9 ± 9V 1ps 85ps BELLE TOP * (HV8) (HV9) 1mm 99(±5)ps 85(±4)ps * (HV8) 1.27(±.19) 1 6 (HV9) 2.33(±.18) 1 6 * (HV8) 1(±44)Hz (HV9) 15(±73)Hz * ( :HV8).2(±.6) ( :HV9).35(±.11) 4.5: * ± 58

A m x P (X = x) = mx exp( m) (A.1) x! x 1 m R P (X =)= e m m! =1 R (A.2) P (X =)= lnp(x =) = ln(1 R) (A.3) 1 P (X =1)= e m m 1 1! (A.4) 2 3... 1 (PE) 4PE A.1 59

A.1: 6

B ADC TDC CAMAC(Computer Automated Mesurement And Control) BELLE PC-98 CAMAC OS PC-Linux PC-Linux CAMAC C ADC TDC PC-98 PC- Linux PC-98 61

[1] M.Kobayashi and T.Maskawa, Prog. Theor. Phys. Vol49(1973). [2] K. /,, - - [3] M.Akatsu et al., Time-Of-Propagation Cherenkov counter for particle identification, DPNU-99-8 Mar.9,1999. [4] Hamamatsu Photonics K.K PHOTOMULTIPLIER TUBE catalog, 1997. [5] M.Yamaga, Master Thesis, Tohoku University, 1998. [6] K.Fujimoto, Master Thesis, Nagoya University, 2. [7] K.Tagashira, Master Thesis, Tohoku University, 2.