DVIOUT-fujin

Similar documents

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

Part () () Γ Part ,

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

LLG-R8.Nisus.pdf

2000年度『数学展望 I』講義録

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Z: Q: R: C: sin 6 5 ζ a, b

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

A

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

量子力学 問題

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta


18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

chap1.dvi

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1


kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

DVIOUT-HYOU

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

Untitled

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b)

( )

201711grade1ouyou.pdf

TOP URL 1

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i


数学Ⅱ演習(足助・09夏)

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

Z: Q: R: C:

eto-vol1.dvi


2017 II 1 Schwinger Yang-Mills 5. Higgs 1

SO(2)

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

i

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

phs.dvi

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

TOP URL 1

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

°ÌÁê¿ô³ØII

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

数学概論I

: , 2.0, 3.0, 2.0, (%) ( 2.

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 +

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

Dynkin Serre Weyl

Chap10.dvi

高等学校学習指導要領

高等学校学習指導要領

II 2 II

TOP URL 1

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

newmain.dvi

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ


Acrobat Distiller, Job 128

IA

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.


Transcription:

2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2

1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2.......................... 9 3.3 [7, 8]......................... 10 4 13 4.1..................... 13 4.2..................... 15 4.3....................... 16 5 19 5.1............... 19 5.2........................... 19 6 21 6.1 3.................... 21 6.2 3.................. 22 6.3 4......................... 22 7 25 A 27 B 29 1

1 1936 70 1985 2 [1, 2] 1994 AT&T,Bell RSA 2

[3] 3

2 2.1 1 1 Z = {, 2, 1, 0, 1, 2, } q 1 q p 1 p n x Z P n (1) (x) (P n (2) (x)) Ã! P n (1) Z Ã! (x) π P n (2) = (x) π 2π eikx W (k) n q (2.1) 1 q à e ik 0 W (k) = 0 e ik!ã 1 p p p 1 p! (2.2) i = 1 p =1/2 W (k) λ =0 λ =cosk P n (1) (x) =P n (2) (x) P n (x)/2 q Z Ã! π P n (x) = 2π eikx cos n k = 1 n 2 n (n + x)/2 π τ a n = t/τ,x x/a, k ak a, τ 0 p t (x) = 4

P t/τ (x/a)/a τ = a 2 0 (cos ak) t/τ =(1 a 2 k 2 /2+ ) t/τ e tk2 /2 Z p t (x) = 2π exp t 2 k2 + ikx = 1 2πt e x2 /2t t 1 2 p 2 x 2 t (x) =0 lim t 0 p t (x) =δ(x) t ( 2.1) 2.1: 200 2.2 (2.1) 2 2 Ã! Ψ (1) n (x) Ψ n (x) = Ψ (2) (2.3) n (x) 5

Ã! Ã! q α (2.1) 1 q β α, β C α 2 + β 2 =1 W (k) Ã! e ik 0 U(k) = A (2.4) 0 e ik A 2 2 (2.3) 1/2 σ j,j =1, 2, 3 2 2 I 2 3 p =(p 1,p 2,p 3 )= i h H(p) =σ p (2.5) σ =(σ 1, σ 2, σ 3 ) 0 1/2 i h t ˆΦ t (p) =(σ p)ˆφ t (p) 0 [4] 2.3 Ψ (1) Ψ (2) n x Ã! Ψ (1) n (x) Ψ (2) n (x) U U 6

S A U = SA Ã! Ã s + 0 S =, A = 0 s a c b d! s +,s s + Ψ (1) n (x) =Ψ (1) n (x +1) s Ψ (1) n (x) =Ψ (1) n (x 1) A AA = A A = I 2 A Ã! A = H = 1 1 1 2 1 1 Ã! Ã! Ψ (1) n+1 (x) Ψ (1) n (x) Ψ (2) n+1 (x) = U Ψ (2) n (x) Ã!Ã!Ã! s + 0 a b Ψ (1) n (x) = 0 s c d Ψ (2) n (x) Ã! aψ (1) n (x +1)+bΨ (2) n (x +1) = cψ (1) n (x 1) + dψ (2) (2.6) n (x 1) [5] [6] 7

3 lim n 3.1 (2.3) (2.6) µ (1) aψ n (x +1)+bΨ (2) n (x +1) Ψ n+1 (x) = cψ (1) n (x 1) + dψ (2) (3.1) n (x 1) µ a b A 2 2 A = U(2) c d k [ π, π) ˆΨ n (k) = µ ˆΨ(1) n (k) ˆΨ (2) n (k) Ψ (j) n (x) = Z π π 2π eikx ˆΨ(j) n (k) ˆΨ (j) n (k) = X Ψ (j) n (x)e ikx j =1, 2 x Z (3.1) ˆΨ n+1 (k) =U(k) ˆΨ n (k), n =0, 1, 2, U(k) (2.4) µ n ˆΨ α 0 (k) =, α, β β C, α 2 + β 2 =1 U(k) n ˆΨ n (k) =U(k) n ˆΨ 0 (k) (3.2) 8

n Ψ n (x) = = Z π π Z π π 2π eikx ˆΨn (k) 2π eikx U(k) n ˆΨ0 (k) n P n (x) = Ψ n (x) 2 = Ψ n(x)ψ n (x) Z π 0 Z π = 0 π 2π π 2π ei(k k )x ³ ˆΨ 0 (k0 )U (k 0 ) n ³U(k) n ˆΨ0 (k) (3.3) U(2) SU(2) e iϕ, ϕ [ π/2, π/2) U(2) SU(2) (3.3) A SU(2) determinant 1 2 2 H = 1 µ 1 1 U(2) (3.4) 2 1 1 H = e iπ/2 A, A = 1 µ i i SU(2) (3.5) 2 i i SU(2) ( Ã! ) a b SU(2) = A = ; a, b C, a 2 + b 2 =1 b a ( Ã! ue iθ 1 u2 e iφ = A = ; 1 u 2 e iφ ue iθ o u [0, 1], θ, φ [ π, π) (3.6) SU(2) u, θ, φ ( ) 3.2 X n n n =0, 1, 2, x Z f f(x n ) D E f(x n ) = X f(x)p n (x) x Z = X Z π 0 Z π f(x) 0 x Z π 2π e ik x ˆΨ n (k 0 ) π 2π eikx ˆΨn (k) 9

f(x) =x r,r =0, 1, 2, D E Xn r = X x Z Z π π 0 2π e ik0 x ˆΨ n (k 0 ) Z π π ½µ i d r ¾ e ikx ˆΨ n (k) 2π ˆΨ n (k) k [ π, π) Z π π 2π ½µ i d r ¾ Z π µ e ikx ˆΨ n (k) = π 2π eikx i d r ˆΨn (k) X r n D E Xn r = X e ixk =2πδ(k) x Z Z π π µ 2π ˆΨ n(k) i d r ˆΨn (k) f(x) x =0 f(x) = P j=0 a jx j D E Z π µ f(x n ) = π 2π ˆΨ n(k)f i d ˆΨ n (k) (3.7) 3.3 [7, 8] U(k) n x Z (3.3) n f (3.7) U(k) U(k) λ λ =1 Ψ n (x) P n (x) n 2.1 X n /n n [7, 8] r =0, 1, 2, h(x n /n) r i Z dy y r ν(y) n 10

ν(y) µ(y; a ) = p 1 a 2 π(1 y 2 ) p a 2 y 2 (3.8) µ I(y; a, b; α, β) = 1 α 2 β 2 + αβ ab + α βa b y (3.9) a 2 ν(y) =µ(y; a )I(y; a, b; α, β)1 { y < a } (3.10) 1 {ω} ω ω 1 {ω} =1 1 {ω} =0 A (3.4) (2.1) (2.2) p =1/2 I 6= 1 ( 3.1) α = β αβ ab + α βa b =0(a, b A ) µ(y; a )1 { y < a } [7, 8]( 3.2 ) 11

3.1: 200 A α =1, β =0 3.2: α =1/ 2, β = i/ 2 3.1 12

4 4.1 µ µ µ 0 1 0 i 1 0 σ 1 =, σ 2 =, σ 3 = 1 0 i 0 0 1 3 q =(q 1,q 2,q 3 ) q = q (σ q) 2 = q 2 I 2 e iσ q X 1 = ( iσ q)n n! n=0 Ã! = I 2 iσ ˆq tan q cos q (4.1) ˆq ˆq = q/q A SU(2) (2.4) µ ue i(k+θ) 1 u2 e i(k+φ) U(k) = 1 u 2 e i(k+φ) ue i(k+θ) = u cos(k + θ) " Ã!# 1 u 2 sin(k + φ) 1 u I 2 + i u cos(k + θ) σ 2 cos(k + φ) 1 + u cos(k + θ) σ 2 + tan(k + θ) σ 3 U(k) (4.1) q 1 u 2 u 1 u 2 u u cos(k + θ) =cosq sin(k + φ) cos(k + θ) = ˆq 1 tan q cos(k + φ) cos(k + θ) = ˆq 2 tan q tan(k + θ) = ˆq 3 tan q (4.2) q(k) " # q(k) = arccos u cos(k + θ) = arctan " r # 1 1 cos(k + θ) u 2 cos2 (k + θ) (4.3) (4.4) 13

arccos x arctan x q(k) k [ π, π) 1 u2 /u ˆq 1 (k) = p sin(k + φ) 1/u2 cos 2 (k + θ) 1 u2 /u ˆq 2 (k) = p cos(k + φ) 1/u2 cos 2 (k + θ) 1 ˆq 3 (k) = p sin(k + θ) (4.5) 1/u2 cos 2 (k + θ) 3 ³ q(k) = q(k)ˆq 1 (k),q(k)ˆq 2 (k),q(k)ˆq 3 (k) (4.6) (4.1) U(k) U(k) =e iσ q(k) (4.7) n =0, 1, 2, t [0, ) ˆΨ t (k) =e itσ q(k) ˆΨ0 (k), k [ π, π) (4.8) h =1 i t ˆΨ t (k) =H(q(k)) ˆΨ t (k) (4.9) (2.5) (4.3)- (4.6) k [ π, π) 7 q p- (3.2) (4.9) p (2.5) [4] λ = ±p p = p p ˆp = p/p µ (1) µ ψ + (ˆp) cos(θp /2) ψ + (ˆp) = ψ (2) = + (ˆp) sin(θ p /2)e iϕ p µ (1) µ ψ (ˆp) sin(θp /2)e iϕ p ψ (ˆp) = ψ (2) = (4.10) (ˆp) cos(θ p /2) p 1 = p sin θ p cos ϕ p,p 2 = p sin θ p sin ϕ p,p 3 = p cos θ p, ψ + (ˆp) 2 = ψ + (ˆp)ψ +(ˆp) =1 ψ (ˆp) 2 = ψ (ˆp)ψ (ˆp) =1 ψ +(ˆp)ψ (ˆp) =ψ (ˆp)ψ + (ˆp) = 0 (4.11) 14

(4.3)-(4.6) k 7 q p- 4.2 (4.3)-(4.5) q j (k),j =1, 2, 3 k [ π, π) q(k) p- k [ π, π) ³ ê 3 = u cos(φ θ),usin(φ θ) p 2 1 u (4.12) q(k) ê 3 =0 k [ π, π) q(k) ê 3 ê 3 Π(u, θ, φ) (4.3) arccos x 0 u 1 u 0 arccos u π/2 u =0 arccos u = π/2 u =1 arccos u =0 A q(k) = q(k) k = θ(mod 2π) q min = arccos u k = π θ (mod 2π) q max = π q min k = π/2 θ k = π/2 θ (mod 2π) q(k) =π/2 ³ ê 1 = sin(φ θ), cos(φ θ), 0 ³p ê 2 = 1 u2 cos(φ θ), p 1 u 2 sin(φ θ),u (4.13) (ê 1, ê 2, ê 3 ) p- Π(u, θ, φ) (ê 1, ê 2 )- ê 1 k 0 = θ (mod 2π) q(k 0 ) γ ˆq(k) =q(k)/q(k) cos γ = ˆq(k) ê 1 cos γ = ( 1 u 2 /u) cos(k + θ) p 1/u2 cos 2 (k + θ) sin γ = (1/u)sin(k + θ) p 1/u2 cos 2 (k + θ) (4.14) (4.15) (4.4) (4.14) Π(u, θ, φ) (q, γ), 0 q<, γ [ π, π) tan q = 1 u 2 u 1 cos γ (4.16) 15

(4.3)-(4.6) q γ q 1 = q p 1 u 2 cos(φ θ)sinγ q sin(φ θ)cosγ q 2 = q p 1 u 2 sin(φ θ)sinγ q cos(φ θ)cosγ q 3 = qu sin γ (4.17) q Π(u, θ, φ) (q, γ) {q(k); k [ π, π)} SU(2) 3 u, θ, φ ê 3 (4.12) 4.1 u =0 z u 0 1 ( cos(φ θ), sin(φ θ), 0) (x, y) arctan x x 0 (0 arctan x<π/2) x <0 (π/2, π) (4.16) " # 1 u 2 1 q =arctan u cos γ 4.1 u =0 q π/2 π/2 π/2 γ π/2 cos γ 0 u 1 q 0 π γ < π/2 π/2 < γ < π q π u (0, 1) 4.2 u 4.3 (3.7) [ π, π) k γ [ π, π) k γ J = /dγ A) 1 u 2 J = 1 u 2 sin 2 γ (4.18) k Z π π Z π 2π f(k) = dγ π 2π 1 u 2 1 u 2 sin 2 f(k(γ)) (4.19) γ k(γ) (A.2) (A.3) γ y ; y = u sin γ (4.20) 16

4.1: u φ θ =0 u =0,u =1/ 2( ),u =0.9 4.2: u u ' 0, u =1/ 2( ), u ' 1 17

(4.19) Z π π Z u dy 1 1 u 2 f(k) =2 p 2π u 2π u2 y 2 1 y 2 f(k(y)) (3.8) Z π Z u π 2π f(k) = dy µ(y; u)f(k(y)) u 18

5 5.1 x =0 Ã! Ã! α Ψ 0 (x) =δ(x) ˆΨ α 0 (k) = β β α, β C α 2 + β 2 =1 ˆΨ 0 (k) p = q(k) H(p) (4.10) ˆΨ 0 (k) =C + (ˆq(k))ψ + (ˆq(k)) + C (ˆq(k))ψ (ˆq(k)) (5.1) C + (ˆp) C (ˆp) ˆp = p/ p ( B (B.1) ) n =0, 1, 2, (4.8) ) ˆΨ n (k) = e (C ih(q(k))n + (ˆq(k))ψ + (ˆq(k)) + C (ˆq(k))ψ (ˆq(k)) = e iq(k)n C + (ˆq(k))ψ + (ˆq(k)) + e iq(k)n C (ˆq(k))ψ (ˆq(k))(5.2) ψ ± (ˆp) λ = ±p H(p) q(k) q(k) = q(k) 5.2 (3.7) f(x) =x r,r =0, 1, 2,, [9] (5.2) µ i d r ˆΨn (k) µ r dq(k) = e iq(k)n C + (ˆq(k))ψ + (ˆq(k))n r µ + dq(k) r e iq(k)n C (ˆq(k))ψ (ˆq(k))n r + O(n r 1 ) (5.3) 19

(3.7) (5.2) (5.3) (4.11) n [9] (A.1) = lim h(x n/n) r i n Z )Ã π ( C + (ˆq(k)) 2 +( 1) r C (ˆq(k)) 2 sin(k + θ) p 2π 1/u2 cos 2 (k + θ) π! r (5.4) k γ (4.15), (4.19) (B.2) Z π lim h(x n/n) 2m dγ 1 u 2 i = n π 2π 1 u 2 sin 2 (u sin γ)2m γ ( ) 1 u lim h(x n/n) 2m+1 i = ( α 2 β 2 2 )+ (αβ e i(φ θ) + α βe i(φ θ) ) n Z π dγ π 2π u 1 u 2 1 u 2 sin 2 (u sin γ)2m+2 γ m =0, 1, 2, (4.20) (3.8) lim h(x n/n) 2m i = n Z u lim h(x n/n) 2m+1 i = n dy µ(y; u)y 2m u ( ) 1 u ( α 2 β 2 2 )+ (αβ e i(φ θ) + α βe i(φ θ) ) u Z u dy µ(y; u)y 2m+2 u [7, 8] X n n Ã! a b A = b a a, b C, a 2 + b 2 =1 µ α Ψ 0 (x) =δ(x), α 2 + β 2 =1, α, β C β Z f(x) (5.5) hf(x n /n)i Z dy f(y)ν(y) ν(y) (3.10)-(3.9) n 20

6 6.1 3 2 3 Ψ (1) n (x) Ψ (2) n (x) Ψ (3) n (x) 3 U = SA s + 0 0 S = 0 s 0 0 0 0 s, A = a b c d e f g h i s 0 s 0 Ψ n (x) =Ψ n (x) 2 3 G = 1 1 2 2 2 1 2 3 2 2 1 3 Ψ (1) n+1 (x) aψ (1) n (x +1)+bΨ (2) n (x +1)+cΨ (3) n (x +1) Ψ (2) n+1 (x) = dψ (1) n (x)+eψ (2) n (x)+fψ (3) n (x) Ψ (3) n+1 (x) gψ (1) n (x 1) + hψ (2) n (x 1) + iψ (3) n (x 1) (6.1) 21

6.2 3 [10] [9] ( 6.1, 6.2) 6.3 4 4 2,3 4 ( 6.3, 6.4 ) Ψ (1) n+1 (x) Ψ (2) n+1 (x) Ψ (3) n+1 (x) Ψ (4) n+1 (x) = 1 2 Ψ (1) n (x +2)+Ψ (2) n (x +2)+Ψ (3) n (x +2)+Ψ (4) n (x +2) Ψ (1) n (x +1) Ψ (2) n (x +1)+Ψ (3) n (x +1)+Ψ (4) n (x +1) Ψ (1) n (x 1) + Ψ (2) n (x 1) Ψ (3) n (x 1) + Ψ (4) n (x 1) Ψ (1) n (x 2) + Ψ (2) n (x 2) + Ψ (3) n (x 2) Ψ (4) n (x 2) 22

6.1: = t 11 2 / 6 6.2: = t (1 i 1)/ 3 23

6.3: = t (1 ii1)/2 6.4: = t (1 1 1 i)/2 24

7 3 3 [11] - 1 [12] 25

26

A q(k) (4.3) (i) q(k) =π arccos u & π 2 & arccos u k + θ = π % π 2 % 0 (ii) q(k) = arccos u % π 2 % π arccos u k + θ =0% π 2 % π x = a % b x a b x = a & b x a b π k + θ 0 dq(k)/ 0 0 k + θ < π dq(k)/ 0 (d/dx) arccos x = 1/ 1 x 2 dq(k) = sin(k + θ) p 1/u2 cos 2 (k + θ) (A.1) (4.3)-(4.5) ³ q( π θ) = q max sin(φ θ), cos(φ θ), 0 q( π/2 θ) = π ³p 1 u2 cos(φ θ), p 1 u 2 2 sin(φ θ),u ³ q( θ) = q min sin(φ θ), cos(φ θ), 0 q(π/2 θ) = π ³ p 1 u 2 2 cos(φ θ), p 1 u 2 sin(φ θ), u q min =arccosu q max = π q min (4.14) (4.15) k + θ = π γ = π k + θ = π/2 γ = π/2 k + θ =0 γ =0 k + θ = π/2 γ = π/2 sin(k + θ) = ( 1 u 2 /u)sinγ p (1 u2 )/u 2 +cos 2 γ (A.2) cos(k + θ) = (1/u)cosγ p (1 u2 )/u 2 +cos 2 γ (A.3) 27

(A.3) " # sin(k + θ) = d (1/u)cosγ p dγ dγ (1 u2 )/u 2 +cos 2 γ (A.2) " # d (1/u)cosγ p dγ (1 u2 )/u 2 +cos 2 γ 1 u 2 =sin(k + θ) 1 u 2 sin 2 γ J = /dγ (4.18) 28

B µ α φ 0 =, α, β C, α 2 + β 2 =1 β H(p) =σ p (4.10) (4.11) φ 0 = C + (ˆp)ψ + (ˆp)+C (ˆp)ψ (ˆp) C + (ˆp) = ψ + (ˆp)φ 0 = α cos θ p 2 + β sin θ p 2 e iϕp C (ˆp) = ψ (ˆp)φ 0 = α sin θ p + β cos θ p 2 eiϕp 2 (B.1) (4.17) ˆp ˆq(γ) ³p ˆp 1 ± iˆp 2 ˆq 1 ± iˆq 2 = 1 u2 sin γ i cos γ e i(φ θ) C ± (ˆq(γ)) 2 = 1 2 ± 1 n 1 u ( α 2 β 2 2 )+ (αβ e i(φ θ) + α βe ou i(φ θ) sin γ 2 u 1 2 i(αβ e i(φ θ) α βe i(φ θ) )cosγ (B.2) 29

[1],, (1997). [2],, (2002). [3] M.Katori, S.Fujino, and N.Konno, Phys. Rev. A 72, 012316 (2005) [4],, (1973). [5], No. 492, PP. 37-44, (2004). [6] J.Kempe, Contemp. Phys. 44, 307 (2003). [7] N.Konno, Quantum Inf. Process. 1, 345 (2002). [8] N.Konno, J.Math. Soc. Jpn, 57, 1179 (2005). [9] G.Grimmett, S.Janson, and P.F.Scudo, Phys. Rev. E 69, 026119 (2004). [10] N.Inui, N.Konno and E.Segawa, Phys. Rev. E 72, 056112 (2005). [11] D.Bouwmeester, I.Marzoli, G.P.Karman, W.Schleich, and J.P.Woerdman, Phys. Rev. A 61, 013410 (1999). [12] T.Oka, N.Konno, R.Arita, and H.Aoki, Phys. Rev. Lett. 94, 100602 (2005). 30