wiles05.dvi

Similar documents
2 Riemann Im(s) > 0 ζ(s) s R(s) = 2 Riemann [Riemann]) ζ(s) ζ(2) = π2 6 *3 Kummer s = 2n, n N ζ( 2) = 2 2, ζ( 4) =.3 2 3, ζ( 6) = ζ( 8)

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

非可換Lubin-Tate理論の一般化に向けて

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p

TOP URL 1

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c


() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

On a branched Zp-cover of Q-homology 3-spheres

6.1 (P (P (P (P (P (P (, P (, P.

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

.5.1. G K O E, O E T, G K Aut OE (T ) (T, ρ). ρ, (T, ρ) T. Aut OE (T ), En OE (F ) p..5.. G K E, E V, G K GL E (V ) (V, ρ). ρ, (V, ρ) V. GL E (V ), En

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

6.1 (P (P (P (P (P (P (, P (, P.101

Z: Q: R: C:

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

2019_Boston_HP

meiji_resume_1.PDF



1. Γ, R 2,, M R. M R. M M Map(M, M) 3, Aut R (M). ρ : Γ Aut R (M) Γ. M R n, R, R ρ : Γ Aut R (M) GL n (R) := {g M n (R) det(g) R } 4. ρ Γ R R M.,,.,,

: , 2.0, 3.0, 2.0, (%) ( 2.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π)

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

Collatzの問題 (数学/数理科学セレクト1)

i

30

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

Note.tex 2008/09/19( )

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

1. A0 A B A0 A : A1,...,A5 B : B1,...,B


grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

D 24 D D D

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) R = T, Fermat Wiles, Taylor-Wiles R = T.,,.,. 1. Fermat Fermat,. Fermat, 17

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

³ÎΨÏÀ


16 B


201711grade1ouyou.pdf

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y


ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

Part () () Γ Part ,

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

KENZOU

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

1 1.1 n 3 X n + Y n = Z n Fermat Fermat Diophantus 2 Bachet x 2 + y 2 = z 2 Fermat Wiles 4 Kummer 5 Dedekind 6 ζ n 1 n ζ n =

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

i 18 2H 2 + O 2 2H 2 + ( ) 3K

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30


II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou


y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

newmain.dvi

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

untitled

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

I

, = = 7 6 = 42, =

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

Transcription:

Andrew Wiles 1953, 20 Fermat.. Fermat 10,. 1 Wiles. 19 20., Fermat 1. (Fermat). p 3 x p + y p =1 xy 0 x, y 2., n- t n =1 ζ n Q Q(ζ n ). Q F,., F = Q( 5) 6=2 3 = (1 + 5)(1 5) 2. Kummer Q(ζ p ), p Fermat Fermat p., F Cl(F ). Cl(F ). O F F F O F,. Cl(F ), Cl(F )= {F O F } {F O F }, Cl(F ). F Cl(F )={0}, Cl(Q( 5)) = Z/(2). F Cl(F ), F Cl(F ) 3. 1 Wiles. 2 n 3 x n + y n =1 n =4 n 3. 3 Cl(F) ={0} 2 F. 1

, F O F P ζ F (s) = (1 N(P) s ) 1 (N(P) N(P) = O F /P ). ζ F (s) s =1 1.. (Dirichlet ). F Cl(F ) : Cl(F ) = lim s 1 (s 1)ζ F (s) w F D F 1/2 2 r 1 (2π) r 2RF (w F F 1, D F, R F. r 1, r 2 F ). F Q 0. Serre Q d X Hasse-Weil ζ X (s) GQ = Gal(Q/Q) Hét d (X Q, Q l) ζ X (s) = (det(1 p: Frob p t; Hét d (X Q, Q l) I p ) t=p s) 1 4., Sel(X) Hét d (X Q, Q/Z) H 1 (GQ,Hét d (X Q, Q/Z)). ζ X (s) Sel(X) ζ F (s) Cl(F ) ζ X (s) Sel(X). 20 5.. Wiles. Wiles. 1. F 20,. 2 Kronecker-Weber. 4 Frob p p, I p. 5.. 2

2. Grothendieck Q X GQ Hét (X Q, Q l). 3. p- ( ) mod p n Diophantine. 20 ( ) p-, p-. Hilbert,, Artin,., ( ). Wiles. Wiles 3 : A. ( ) BSD ( 2 ) B. ( 3 ) C. Fermat ( 4 ) 2 BSD E Q. 3 x 3 + ax + b y 2 = x 3 + ax + b (a, b Q), 1. 0., F Q E(F ) Mordell-Weil. Birch and Swinnerton-Dyer (, BSD ). E Q., ζ E (s) s =1 ord s=1 ζ E (s) E(Q). E EndQ (E) n Z End Q (E). EndQ (E) = Z, EndQ (E) 3

E., EndQ (E) 2 K = Q( d) O K, E., E D : y 2 = x 3 + Dx, (x, y) ( x, 1y) n 6. Wiles Coates : 1 (Coates-Wiles/1977). E Q 1 2 K EndQ (E) = O K. ζ E (1) 0 E(Q). ζ E (s) K.. u Z p [ζ p ] f u (ζ p 1) = u f u (t) Z p [[t]], g (r) u (t) = ( (1 + t) d dt) r log(fu (t)). r ϕ (r) : Z p [ζ p ] Z/(p)Z ϕ (r) (u) =g (r) u (t) t=0 Z p mod p (1). u f u (t) g u (r) (t)., g u (r) (t) g u (r) (t) t=0 p, ϕ (r) well-defined., u =1+ζ p Z[ζ p ]., f u (t) =2+t. g u (r) (t) t=0 ζ(s) (1 2 r )ζ(1 r) 7. ( ), E(Q) ζ E (1) = 0. K p = ππ p 8.[π r ] EndQ (E) π r O K, Ker([π r ]) E(Q) K K(E π r ), r 1 K(E π r ) K(E π ). P E(Q). [π n ]Q n = P Q n E(Q) K(E π )(Q n )/K(E π ). 9, : g (r) u K(E π )(Q n )/K(E π ) n π. (2) 6, EndQ (E D) = Z[ 1]. 7 t = T 1 g u (r) (T )=(T d dt )r 1 T 1+T dx )r 1 ex 1+e x x=0. xex = (2x)e2x 1+e x e 2x 1, T = exp(x) (t) t=0 =( d r (r 1)! ζ(1 r). 8. 9 Coates-Wiles.. xex Taylor e x 1 4

, K(E π ) K O K(Eπ ) (π) =p p 1. O K(Eπ ) p O p. 2 : E = {x O K(E π ) x 1modp}, U p = {x O p x 1modp}. U p K(E π ), E U p. U p O p -, (2) 10. E U p p U p (3) (1) ϕ (r), ζ p E π, log ((1 + t) d dt )r ψ (r) : U p O p /p = Z/(p). Θ p E, ψ (1) (Θ p ) ζ E (1)/Ω E mod p (4)., Ω E = E(R) ω E, ζ E (1)/Ω E Q. (3), (4) ζ E (1)/Ω E p. p, ζ E (1) = 0. ( ) K(E π )/K(E π ) Z p, Z p -.. Coates-Wiles 2. 1. K(E p )/K 2, Rubin 80. 2, 2 (ζ alg K,p (S, T )) = (ζanal K,p (S, T )), Coates-Wiles S = T =0 p. 2. E,. Kolyvagin, ζ E (1) 0 E(Q). 10 E Up p Gal(K(E π )/K). 5

BSD Coates-Wiles. BSD ord s=1 ζ E (s) 0 1 ranke(q) = ord s=1 ζ E (s)., ord s=1 ζ E (s) 2 ord s=1 ζ E (s) ranke(q). ord s=1 ζ E (s) 2. 3 Wiles, Mazur. K n = Q(ζ p n) K = 1 n< K n, Γ = Gal(K /K 1 ) Z p [[Γ]] = lim Z p [Γ/Γ pn ]. Γ χ cyc χ cyc :Γ 1+pZ p = Zp. p- A n = Cl(K n ){p} Gal(K n /Q). ω : Gal(K 1 /Q) (Z/(p)) A n = 0 i p 2 A ωi n, X (i) = lim na ωi n i Z p [[Γ]]-., R R- M M Char R (M). R = Z, M = 1 j r Z/(n j ), Char R (M) =(n 1 n r ). CharZ p[[γ]](x (i) ) Z p [[Γ]] L alg,(i) p p- L., -Leopoldt,, Coleman p- L L anal,(i) p Z p [[Γ]] : r i mod p 1 r χ r cyc(l anal,(i) p )=(1 p r )ζ( r) Mazur-Wiles. 2( =Mazur-Wiles /1984). 0 <i<p 1 i Z p [[Γ]] (L alg,(i) p )=(L anal,(i) p ). ( ) K n Dirichlet i (L alg,(i) p ) (L anal,(i) p ) i (L alg,(i) p )= (L anal,(i) p )., (L alg,(i) p ). Char R (M) R- M., 6

( )X (i) L anal,(i) p., H n (p) p K n (p) Gal(K 1 /Q)- A n Gal(H n /K n )., n Gal(K 1 /Q) ω i Gal(Q/K n ) D p = r 1 Z/(p r ) L anal,(i) p. ( ) ρ (i) 1 b n : GQ GL 2 (Z/p rn n (g) Z), g 0 ω i (g). 1. ρ (i) n p. 2. Gal(Q/K n ) GQ p. 3. GQ Z/(p r n ), g b n (g)., g, g Gal(Q/K n )(n 1) ω i (g) = 1 b n (gg ) = b n (g)+b n (g ) b n : Gal(Q/K n ) D p. ρ (i) n, b n Gal(K 1 /Q). GQ ρ (i) n.. Ribet.. H SL 2 (R). N {( ) } a b Γ 1 (N) = SL c d 2 (Z) a d 1,c 0modN H/Γ 1 (N) X 1 (N). X 1 (N)(C) =X 1 (N) Q X 1 (N) N. X 1 (N). GL 2 n Het(X 1 1 (p n )Q,D p) ρ (i) n. Wiles, 11. g =[F : Q] g. Wiles 11 F F, 2 Q( d). 7

. G, G = GL 1 (F ). O[[Γ]] (O Z p ), G = GL 2 (F ) ρ : G F GL 2 (O[[Γ]]). I =(p- ) I O[[Γ]] mod I ρ I ρ I : G F GL 2 (O[[Γ]]/I), g ( 1 B(g) 0 D(g) D(g) Z p - F, ρ I B., n B : Gal(F/ F ) O[[Γ]]/I,., F 2, (pseudo represenation)..,... Skinner-Urban BSD Mazur-Wiles. ) 4 - Fermat, N X 1 (N) E E. Q E, ζ E (s) ( )ζ E (s) ζ E (2 s) Weil 12,. 12 ζ E (s) twist. 8

3 (Wiles, Taylor-Wiles/1994). E 13, E. 3 80 Ribet.. Fermat p 3. 3 Wiles 7., 3 {Q } {Q }... Wiles,., d X p- Hét d (X Q, Z p) H p (X) X, X H p (X)., E H p (E) E Faltings, E H p (E ) = H p (E) 14 E. {Q }/. Wiles,,. H p (E) mod p n H p (E)/(p n )H p (E) (Z/(p n )) 2. GQ GL 2 (Z/(p n )) ρ E,p n., p =3 GL 2 (F 3 ).. Langlands-Tunnell, ρ E,3 ρ E,3 = ρe,3 E. p 5 GL 2 (F p ) 13 f(x) =x 3 +ax+b mod p p F p f p (x) F p [x]. p 5 f p(x) 2, p =2, 3 y 2 = x 3 +ax+b. 14 H p (E ) Z p Q p = Hp (E) Z p Q p. 9

,. : R n = {ρ : GQ GL 2 (Z/(3 n )) ρ ρ E,3 mod (3) + ( )} T n = {ρ R n E ρ = ρ E,3 n} Langlands-Tunnell R 1 = T 1 n T n. n Z/(3 n+1 ) Z/(3 n ), R n+1, T n+1 R n, T n. R n, n ρ E,3 n R n. Faltings n ρ E,3 n T n R n E. T n,r n T n+1,r n+1 η(r n ),η(t n ) Z η(r n ) η(t n ). Wiles, η(r n ), n η(r n ) η(t n ). T n = R n 15.., Wiles η(r n ) η(t n ). 16.. Wiles - Fermat. Wiles - : - (=Breuil-Conrad-Diamond-Taylor /2001). Q E. 15, Langlands-Tunnell R n ρ E,3. ρ E,3, p =5 Wiles. 16 Wiles,. 10

Wiles. 5 Wiles p-,., Wiles.,.. Wiles.., Wiles. BSD. Wiles,.. Wiles.. ( ).,,,, p-.. 11

, II (,, ). 1 ( 2 )( ). Elementary theory of L-functions and Eisenstein series ( ) 7.,, 3 Wiles. Fermat, Wiles. 12