1 1.1 n 3 X n + Y n = Z n Fermat Fermat Diophantus 2 Bachet x 2 + y 2 = z 2 Fermat Wiles 4 Kummer 5 Dedekind 6 ζ n 1 n ζ n =

Size: px
Start display at page:

Download "1 1.1 n 3 X n + Y n = Z n Fermat Fermat Diophantus 2 Bachet x 2 + y 2 = z 2 Fermat Wiles 4 Kummer 5 Dedekind 6 ζ n 1 n ζ n ="

Transcription

1 Noether Dedekind

2 1 1.1 n 3 X n + Y n = Z n Fermat Fermat Diophantus 2 Bachet x 2 + y 2 = z 2 Fermat Wiles 4 Kummer 5 Dedekind 6 ζ n 1 n ζ n = cos 2π + i sin 2π Fermat n n x n + y n = z n = (x + y)(x + ζ n y)(x + ζny) 2 (x + ζn n 1 y) = z n Z[ζ n ] = {a 0 + a 1 ζ n + + a r ζ r n r 0, a 0,, a r Z} Z x + ζ k ny (k = 0, 1,, n 1) z Fermat n Z[ζ n ] Z[ 5] 6 Z[ 5] 6 = 2 3 = (1 + 5)(1 5) 1 Pierre de Fermat ( ) 2 Diophantus ( ) Diophantus 3 Claude-Gaspard Bachet de Mèziriac ( ) 1612 Problèmes plaisants et delectables qui se font par les nombres 4 Andrew Wiles (1953-) Oxford 5 Ernst Kummer ( ) Weierstrass Kronecker Berlin Richard Dedekind ( ) Dedekind Dirichlet 2

3 2, 3, 1 + 5, 1 5 Z[ 5] 6 2 Kummer 2 = α 2, 3 = βγ = αβ, 1 5 = αγ α, β, γ (complex ideal number) Kummer Fermat Kummer Dedekind (ideal) Fermat 1.2 N N = 2 x 2 Ny 2 = = 1, = 1, = 1 x 2 Ny 2 = 1 Pell 7 x 2 Ny 2 = (x + Ny)(x Ny) = 1 Z[ N] x + Ny Z[ N] Z[ 2] {±(1+ 2) n n Z} x 2 2y 2 = 1 Dirichlet 8 7 John Pell ( ) Diophantus Pell Pell 8 Gustav Peter Lejeune Dirichlet ( ) ( ) Fermat n = 5 n = 14 3

4 Pythagoras 9 Fermat Fermat x n + y n = z n n = 2 x 2 + y 2 = z 2 Pythagoras Pythagoras Pythagoras Fermat 1.3 p p p p 4 1 p = x 2 + y 2 x, y p 4 3 p = x 2 + y 2 x, y Gauss 10 p 4 1 x 2 1 (mod p) x p 4 3 x p = = (2 + i)(2 i) 13 = = (3 + 2i)(3 2i) Z[i] = {a + bi a, b Z} 4 3 Z[i] Z[i] = (2 + i) 2 (2 i) 2 = = (3 + 2i) 2 (3 2i) 2 = Pythagoras ( ) Platon Pythagoras Pythagoras 10 Carl Friedrich Gauss ( ) Gauss 1801 Disquisitiones Arithmeticae Gauss 4

5 Fermat 17 1 (class number) (algebraic number field) 2.2 K O K n > 0 α n c 1 α n 1 c n = 0 c 1,, c n Z K α O K K (ring of integers) O K K K = Q(ζ n ) O K = Z[ζ n ] = { n 1 k=0 a k ζ k n a k Z} ζ n n cos (2π/n) + i sin (2π/n) ζ k n ζ n k K O K 2.3 m 1 1 K = Q( m), Z[ m] = {a b m a, b Z} m 2, 3 mod 4 O K = [ 1 m ] Z = {a b 1 m } a, b Z m 1 mod

6 m 1 1, K = Q( m) K = Q + Q m α = x + y m K (x, y Q) α = x y m K α O K α + α = 2x, αα = x 2 my 2 Z α O K α n +c 1 α n 1 + +c n = 0 c 1, c n Z φ(a+b m) = a b m φ (α ) n +c 1 (α ) n 1 + +c n = 0 α O K α+α, αα O K α + α, αα O K Q O K Q = Z a/b O K Q, (a, b) = 1 11 (a/b) n + d 1 (a/b) n d n = 0 n > 1, d 1,, d n Z a n = b(d 1 a n 1 + bd 2 a n d n b n 1 ) (a, b) = 1 b = ±1 a/b Z O K Q = Z α + α, αα O K Q = Z α + α Z, αα Z d 1 = (α + α ), d 2 = αα α 2 + d 1 α + d 2 = 0 α O K x, y Q (1) m 2, 3 mod 4 2x, x 2 my 2 Z x, y Z (2) m 1 mod 4 2x, x 2 my 2 Z 2x, 2y, x y Z p a 0 a p 2.4 p a 0 a p ord p (t) a = p m u v, m Z u, v p m ord p (a) a p m < 0 (1) ord p (ab) = ord p (a) + ord p (b) (2) ord p (a + b) min{ord p (a), ord p (b)} (3) ord p (a) ord p (b) ord p (a + b) = min{ord p (a), ord p (b)} 11 (a, b) = gcd(a, b) 6

7 2.4 x, y Q 2x, x 2 my 2 Z 2y Z p x 2 my 2 Z ord p (x 2 my 2 ) 0 ord p (x 2 ) 0 ord p (m) + 2ord p (y) < 0 ord p (x 2 my 2 ) = ord p (m) + 2ord p (y) < 0 ord p (m)+2ord p (y) 0 ord p (m) 1 2ord p (y) 1 ord p (y) 0 x 2 my 2 Z ord 2 (x 2 my 2 ) 0 ord 2 (x) 1 ord 2 (x 2 ) = 2ord 2 (x) 2 ord 2 (m) + 2ord 2 (y) < 2 ord 2 (x 2 my 2 ) = ord 2 (m) + 2ord 2 (y) < 2 ord 2 (m) + 2ord 2 (y) 2 ord 2 (m) 1 2ord 2 (y) 3 ord 2 (y) 1 z z Z p ord p (z) 0 2y Z (1) m 2, 3 mod 4 2x, x 2 my 2 Z x, y Z x, y Z 2x, x 2 my 2 Z 2x, x 2 my 2 Z x, y / Z x, y Z Z x 2 my 2 / Z Z x = 2x + 1, y = 2y + 1 (x, y Z) 2 2 x 2 my 2 = α + 1 m 4 / Z (α Z) (2) m 1 mod 4 2x, x 2 my 2 Z 2x, 2y, x y Z 2x, 2y, x y Z 2x, x 2 my 2 Z x, y Z x = 2x + 1, y = 2y + 1 (x, y Z) x, y Z 2 2 x = 2x + 1, y = 2y x 2 my 2 = α + 1 m 4 (α Z) 2x, x 2 my 2 Z 2x, x 2 my 2 Z x x = 2x + 1 x = x 2 (x Z) y 2y Z y = 2y + 1 y = y 2 (y Z) x y / Z x = 2x + 1 2, y = y x = x, y = 2y x 2 my 2 = α + 1 4, x2 + my 2 = β + m 4 7 (α, β Z) x 2 my 2 / Z

8 m 2, 3 mod 4 x + y m O K x, y Z O K = {a + b m a, b Z} m 1 mod 4 x + y m O K 2x, 2y, x y Z 2x, 2y, x y Z x, y Z x = 2x + 1, y = 2y (x, y Z) x + y m x y + 2y 1 + m 2, x y + (2y + 1) 1 + m α = x + y m O K 2 α = a + b 1 + m (a, b Z) O K = {a + b 1 + m } 2 2 a, b Z 2.3 K O K Z- O K Noether K O K Z-Noether K K a O K (fractional ideal) (1), (2) (1) O K 0 c ca O K 0 (2) a K 0 O K - (1), (2) O K Noether 3.2 K α αo K (α) (α) n 3.3 K K a, b a i b i (n 1, a i a, b i b) a b ab ab O K a (O K : a) = {x K xa O K } (O K : a) a (O K : a) = O K (O K : a) a 8 i=1

9 3.4 K (1) K O K K Cl(K) Cl(O K ) (class number) (2) K O K O K K (i), (ii), (iii) (i) Cl(K) (ii) O K (iii) O K (i) (ii) I O K P O K Cl(K) = I/P Cl(K) = I/P = {ē} I = P O K I = P ( ) O K (ii) (iii) (iii) (ii) O K p O K (0) p 0 α O K α = q 1 q 2 q n (q i : O K ) p q i p i (q i ) p Dedekind (0) (q i ) = p O K (ii) (i) 9

10 3.6 J O K 0 a, b J a b def a b O K - J/ Cl(K) ( ) f J I I/P = Cl(K) a, b J, f(a) = f(b) a b ( ) ( ) f(a) = f(b) a = (u)b u K g g : b a ; t ut g O K - a b ( ) a b O K - φ : a b 0 a, b a φ(ab) = aφ(b) = bφ(a) φ(a) a = φ(b) b ρ = φ(b)/b a a φ(a) = aρ φ ρa = b f(a) = f(b) ( ) a I a ba J b O K \{0} f(ba) = ba = a f f ( ) ( ) (ii) (i) 0 O K - (a) 0 φ a O K (a) φ a (x) = xa 10

11 O K - 0 O K J/ Cl(K) J/ = Cl(K) J/ = 1 Cl(K) = Z K = Q Cl(Q) = {ē} Q Z = {±1} a K a (a) g : K I Im g = P Coker g = I/ Im g = I/P = Cl(K) Ker g = O K 1 O K K g I Cl(K) 0 f f Ker f = Cokerf = Z[ 2] 7 7 = (3 + 2)(3 2) = ( )(5 3 2) = ( )( ) = (1) = (5 3 2)(1 + 2) 2 7 (1) Z[ 2] = {±(1 + 2) n n Z} K O K Z

12 4.1 ( ) Dirichlet 4.2 K (1) K K R (2) K K C σ σ(k) R σ σ : K C ( x σ(x)) 4.3 (Dirichlet ) K r 1 r 2 r = r 1 +r 2 1 O K = Z r ( ) K K = Q( 2) 2.3 O K = Z[ 2] 2 x 2 2 x 2 2 = (x + 2)(x 2) r 1 = 2, r 2 = 0 Dirichlet r = r 1 + r 2 1 = = 1 O K = Z Z/2Z O K = {±(1 + 2) n n Z} (Dirichlet Z Z/2Z ) O K = Z[ 2] = {a + b 2 a, b Z} Z[ 2] = {±(1 + 2) n n Z} (1 + 2)( 2 1) = Z[ 2] n ±(1+ 2) n Z[ 2] {±(1 + 2) n n Z} Z[ 2] 12

13 α Z[ 2] 1 Z[ 2] 1 α > 0 0 < β α < (1 + 2)β β {(1+ 2) n n Z} β Z[ 2] 1 α β < α β Z[ 2] α β 1 1 < α β < α β = x + y 2 (x, y Z) (x + y 2)(a + b 2) = 1 a b Z (ax + 2by) + (bx + ay) 2 = Q ax + 2by = 1 bx + ay = 0 bx ay = 0 (x y 2)(a b 2) = (ax + 2by) + ( bx ay) 2 = = 1 (x + y 2)(x y 2)(a + b 2)(a b 2) = (x 2 2y 2 )(a 2 2b 2 ) = 1 x 2 2y 2 = (x + y 2)(x y 2) = ±1 x y ±1 2 = x + y 2 α β = x + y 2 > 1 1 < x y ±1 2 = x + y 2 < 1 1 < x + y 2 < < 2x < x = 1 1 < x + y 2 < x = 1 1 < 1 + y 2 < < y 2 < 2 y Z α β = 1 α = β {±(1 + 2) n n Z} 5 ( ) a 5.1 p a p p {±1} F p a ( ) a x 2 a (mod p) x = 1 p ( ) a p = a, b Z p ( ) ( ) ( ) ab a b = p p p F p {a2 a F p } 13

14 Gauss 5.3 (1) q p ( ) ( ) q p = ( 1) p 1 2 q 1 2 p q (2) p 12 ( ) { 1 1 p 1 (mod 4) = ( 1) p 1 2 = p 1 p 3 (mod 4) K 2 R Q 2 K = Q( m) m 1 m < 0 { m m 1 (mod 4) N = 4m m 2, 3 (mod 4) 5.4 Z/NZ (Z/NZ) 0 C χ : (Z/NZ) C (mod N )Dirichlet Dirichlet χ m p ( ) m χ(p mod N) = p (#) ( (Z/NZ) N ) χ N a ( ( )) a θ(a) ( ) l l l m θ(a) 12 Euler 14

15 (1) m 1 (mod 4) θ(a) = 1 (2) m 3 (mod 4) a 1 (mod 4) θ(a) = 1 a 3 (mod 4) θ(a) = 1 (3) m a 1, 1 m (mod 8) θ(a) = 1 θ(a) = 1 ( ) a ( ) a θ(a) (Z/NZ) l C Dirichlet ( ) Dirichlet (#) (1) ( ) (#) m 1 (mod 4) ( ) m = ( ) p ( ) p l l m = l 1 l 2 l s l i ( ) ( ) ( ) ( ) m l1 l 2 l s = = ( 1) p 1 2 (1+ l p p ls ) p p l 1 l 2 l s = m l 1 l 2 l s 3 (mod 4) l 1 l 2 l s l i 3 (mod 4) i l j 1 (mod 4) l j 1 (mod 4) l j 1 2 l i 3 (mod 4) l i 1 2 l 1 1 2,..., l s 1 2 l l s l l s (+) (2), (3) l 1 l s 5.5 N χ (mod N )Dirichlet L(s, χ) = n=1 χ(n) n s (χ )Dirichlet L χ(n) n N χ(n mod N) n N

16 5.6 ( 2 ) K 2 m, N χ (#) Dirichlet h K K w K K 1 h K = w K 2 L(0, χ) = w K N L(1, χ) 2π 5.7 w K K = Q( 1) 4 K = Q( 3) 6 K 2 2 K = Q( m) (m Z, m < 0) α K N(α) α N(α) = 1 α K 1 = = O K 1 w K N(α) = 1 α K α 1 α O K Case 1. m 2, 3 (mod 4) 2.3 O K = Z[ m] α = a + b m O K 1 (a, b Z) n = m > 0 N(α) = a 2 b 2 m = a 2 + b 2 n (1) m = 1 N(α) = a 2 + b 2 = 1 α = ±1, ±i w K = 4 (2) m < 1 b 0 1 < b 2 n a 2 + b 2 n = N(α) α 1 b = 0 α = ±1 w K = 2 [ 1 + m ] Case 2. m = 1 (mod 4) 2.3 O K = Z α = 2 a + b 1+ m O 2 K 1 (a, b Z) n = m > 0 N(α) = (a b)2 + ( b 2 )2 n 16

17 (1) m = 3 N(α) = (a b) b2 = 1 b = 0, ±1 α ±1, ± 1 + 3, ± w K = 6 (2) m < 3 m 1 (mod 4) m 7 b 0 N(α) = (a b)2 + n 4 b2 n 4 b2 > 1 α 1 b = 0 N(α) = a 2 α ±1 w K = N χ : (Z/NZ) C (#) Dirichlet L(0, χ) = 1 N N aχ(a) a= K, m, N χ (#) Dirichlet h K = w N K aχ(a) 2N Q( 1) Q( 3) 5.9 K = Q( 1) w K = 4, m = 1 3 (mod 4) N = 4m = 4 h K = a=1 a=1 aχ(a) = 1 (1 χ(1) + 3 χ(3)) 2 ( ) ( ) 1 2 χ(1) = 1, χ(3) = = = h K = 1 ( ( 1)) =

18 K = Q( 3) w k = 6, m = 3 1 (mod 4) N = 3 h k = 6 3 aχ(a) = (1χ(1) + 2χ(2)) 2 3 a=1 ( ) a ( ) χ(a (mod 3)) = χ(1) = 1, χ(2) = 3 ( ) 2 = 1 h k = 1 3 Q( 1) Q( 3) 5.6 K = Q( 1) h K = w K N L(1, χ) = 4 L(1, χ) 2π π L(1, χ) = n=1 13 h K = 1 K = Q( 3) h K = 6 3 2π χ(n) n = = π 4 L(1, χ) = 3 3 π L(1, χ) L(1, χ) = π 3 3 Q( 3) 1 L(1, χ) π 3 3 h K = 3 3 L(1, χ) π h K = 1 L(1, χ) = < 1 h K = L(1, χ) < π π < 2 h K h K = 1 2 h K = w K N L(1, χ) L(1, χ) 2π h K 13 arctan(x) 18

19 1 2 Q( 1), Q( 2), Q( 3), Q( 7), Q( 11), Q( 19), Q( 43), Q( 67), Q( 163) Baker Stark A ( ) (1) R Abel (2) a, b, c A (ab)c = a(bc) (3) a, b, c A a(b + c) = ab + ac (a + b)c = ac + bc (4) a A ax = xa = a x A (5) a, b A ab = ba (4),(5) (1) (5) (1) 6.1.1(4) x ( ) x 1 A (2) 0 A (3) A 1 = 0 a A a = a1 = a0 = 0 A = {0}

20 6.1.3 A B B A (1) a, b B = a + b, a, ab B (2) 1 B A (1) a R ax = xa = 1 x A a A (2) A 0 A (3) A B a B = a 1 B B A a A a a 1 A A A A A M Abel (M + ) M A- A µ : A M M a, b A, x, y M (µ(a, x) ax ) (1) (a + b)x = ax + bx (2) a(x + y) = ax + ay (3) a(bx) = (ab)x (4) 1x = x A- M N a A x N ax N N M A A A A A A- A I, J, a, b, 20

21 A a (1) 1 a = a = A (2) a A = a = A (1) a A a = a1 a A a (2) x a A x 1 A x 1 x = 1 a (1) a = A A A A {0} A A M A-(M i ) i I M A- a A A- (1) i I M i (2) i I M i = { x i x i M i } (3) am = { a i x i a i a, x i M} (3) M A b ab = { ab a a, b b} ab A A a 1, a 2,, a n a 1 a 2 a n M A-N M A- M Abel M/N x M/N, a A ax = ax 21

22 well-defined A M/N M/N A- a A x, y A/a x y = xy A/a well-defined A/a well-defined x = x x x = α α a ax = ax = a(α + x ) = aα + ax = ax = ax x = x, y = y x x = α, y y = β α, β a x y = xy = (α + x )(β + y ) = αβ + αy + βx + x y = x y = x y A- M/N M N A/a A a A, B ϕ : A B (1) a, b A ϕ(a + b) = ϕ(a) + ϕ(b) (2) a, b A ϕ(ab) = ϕ(a)ϕ(b) (3) ϕ(1) = ϕ : A B (1) ϕ(0) = 0 (2) ϕ( a) = ϕ(a) (3) ϕ(a 1 ) = ϕ(a) 1 ( a A ) (1) ϕ(0) = ϕ(0 + 0) = ϕ(0) + ϕ(0) ϕ(0) = ϕ(0) ϕ(0) = 0 (2) (1) 0 = ϕ(0) = ϕ(a a) = ϕ(a) + ϕ( a) ϕ( a) = ϕ(a) 22

23 (3) 1 = ϕ(1) = ϕ(aa 1 ) = ϕ(a)ϕ(a 1 ) ϕ(a 1 ) = ϕ(a) M, M A- ϕ : M M A- A- (1) x, y M ϕ(x + y) = ϕ(x) + ϕ(y) (2) x M, a A ϕ(ax) = aϕ(x) A- ϕ : M N (1) ϕ(0) = 0 (2) ϕ( a) = ϕ(a) ι : A A A ι f : A B, g : B C g f A a A M A-N M A- ϕ : A a a A/a ψ : M x x M/N ϕ ψ A- A/a M/N ϕ : A B Ker ϕ = {a A ϕ(a) = 0} Im ϕ = {ϕ(a) B a A} Ker ϕ A Im ϕ B 23

24 x, y Ker ϕ a A ϕ(x y) = ϕ(x) ϕ(y) = 0 0 = 0 ϕ(ax) = ϕ(a)ϕ(x) = ϕ(a)0 = 0 x y, ax Ker ϕ Ker ϕ A α, β Im ϕ ϕ(x) = α, ϕ(y) = β x, y A α β = ϕ(x) ϕ(y) = ϕ(x y) Im ϕ αβ = ϕ(x)ϕ(y) = ϕ(xy) Im ϕ ϕ(1) = 1 Im ϕ Im ϕ B Ker ϕ ϕ Im ϕ ϕ ϕ : M N A- ϕ Ker ϕ, Im ϕ Ker ϕ = {x M ϕ(x) = 0} Im ϕ = {ϕ(x) N x M} Ker ϕ M A-Im ϕ N A- Ker ϕ Im ϕ α, β Im ϕ a A ϕ(x) = α, ϕ(y) = β x, y A α β = ϕ(x) ϕ(y) = ϕ(x y) Im ϕ aα = aϕ(x) = ϕ(ax) Im ϕ f : A B f Ker f = {0} ϕ : M N A- ϕ Ker ϕ = {0} 24

25 ( ) x Ker f f(x) = 0 f(0) = 0 f(x) = f(0) f x = 0 ( ) f(x) = f(y) f f(x y) = 0 x y Ker f x y = 0 f ϕ : M N A- L N A- ϕ 1 (L) M A- x, y ϕ 1 (L) ϕ(x), ϕ(y) L ϕ(x y) = ϕ(x) ϕ(y) L x y ϕ 1 (L) a A ϕ(ax) = aϕ(x) L ax ϕ 1 (L) ϕ : A B b B ϕ 1 (b) A α A a A ϕ(αa) = ϕ(α)ϕ(α) b αa ϕ 1 (b) ϕ : A B a A ϕ ϕ(a) B α, β ϕ(a) ϕ(x) = α, ϕ(y) = β x, y a x y a α β = ϕ(x) ϕ(y) = ϕ(x y) ϕ(a) b B ϕ(a) = b a A bα = ϕ(a)ϕ(x) = ϕ(ax) ϕ(a) A a A X = {b b A a b} Y = {c c A/a } X Y M A-N M A- S = {L L M A N L} T = {K K M/N A } S T 25

26 π : A A/a F : X Y G : Y X F (b) = π(b) G(c) = π 1 (c) b b = F (b) F (b ) c c = G(c) G(c ) G F = id X, F G = id Y f : A B a a Ker f A π : A A/a g π = f g : A/a B g a = Ker f ϕ : M N A- L L Ker ϕ M A-π : M M/L ψ π = ϕ A- ψ : M/L N ψ L = Ker ϕ π g π = f g A/a a = a a a a Ker f f(a) = f(a ) g : A/a B g(a) = f(a) g π = f a Ker g a Ker f 26

27 g a Ker g, a = 0 a Ker f, a a Ker f a g a = Ker f A x A 0 y A s.t. xy = 0 x A x n = 0 n N x A A N A A A x A A xy = 0 y A \ {0} x 1 A y = 1y = x 1 xy = 0 y A 0 x, y A xy = 0 = x = 0 y = 0 A A p( A) A xy p = x p y p A m( A) A A a m a = a = A a = m 27

28 A SpecA A p A A/p m A A/m p A x, y A xy p x p y p x, y A/p xy = 0 x = 0 y = 0 A/p m A m A A/m {0}, A/m ( ) A/m ( ) F B f : F B f f(1) = 1 Ker f F F Ker f = 0 f A a a m A m A Noether Noether ( 6.4.1) A Noether Zorn Σ a A a Σ Σ I = {a i i I} Σ i I a i 28

29 A x, y a i I x, y a j j I a A x y, ax a j i I a i i I 1 a i 1 a i a i A a i Σ a i I Σ Zorn Σ a A A A A A \ A A m x x ( ) m A \ A m m A m A \ A A \ A = m A \ A A A A \ A A \ A A f : A B p B f 1 (p) A 1 p 1 f 1 (p) f 1 (p) A xy f 1 (p) f(x)f(y) = f(xy) p f(x) p f(y) p x f 1 (p) y f 1 (p) a 1, a 2,, a n A p A n a i p i=1 a i p i p = a i p = a i i 29

30 i a i p i x i a i x i p x i Πx i Πa i a i p x i Πx i p a i p p = a i j p a j M A-L M AL = { a i x i a i A, x i L} AL M A- A L L {x 1, x 2,, x n } AL = Ax 1 + Ax Ax n L A Ax 1, x 2,, x n A (x 1, x 2,, x n ) x (x) PID (3) A a A- M am a (a) (a)m am (M i ) i I A- (M i ) i I M i = {(x i ) i I x i M i i x i = 0} i I A a A a(x i ) i I = (ax i ) i I M i A- (M i ) i I A ( ) A I A- A- I {1, 2,, n} A I A n 30

31 A M M A-M A- M = x 1 M + + x n M ϕ : A n M ϕ((a 1,, a n )) = a 1 x a n x n ϕ A- M A n / Ker ϕ A- ϕ : A n M e i = (0,, 0, 1, 0,, 0))( i 1 0) A n = e 1 A+ + e n A M = ϕ(a n ) = ϕ(e 1 )A + + ϕ(e n )A M A-a A M A- ϕ ϕ(m) am ϕ n + a 1 ϕ n a n = 0 n N, a i a M = Ax 1 + Ax Ax n x i ϕ(x i ) am ϕ(x i ) = Σ n j=1a ij x j a ij a ϕ(x i ) n a ij x j = 0 j=1 A A[t] M α M (Σa i t i )α = Σa i ϕ i (α) well-difined A[t] M n (δ ij t a ij )x j = 0 j=1 P = (δ ij t a ij ), x = t (x 1, x 2,, x n ) P x = 0 P P (c) (A[t] ) P (c) P x = (detp )Ix = (detp )x = 0 i (detp )x i = 0 x 1, x 2,, x n M detp A[t] x M (detp )x = 0 31

32 P (i, j)- δ ij t a ij detp t n monic n 1 a M M A- ϕ n + a 1 ϕ n a n = A N A A N A A N = p x N A x n = 0 n N p SpecA p x n p p x n p x n 1 p x p x N x N A A Σ Σ = {a a A n N, x n a} (0) Σ Σ Σ Zorn a Σ a, b A a, b a a a + (a) a a + (b) a a + (a), a + (b) Σ m, n N s.t. x m a + (a), x n a + (b) x m+n a + (ab) a + (ab) Σ a Σ ab a a a b a = ab a a Σ x a a x N 32

33 A a r(a) = {x A n N s.t. x n a} r(a) A x, y r(a) x n, y m a n, m N l = max{n, m} (x y) 2l a x y r(a) a A (ax) n ax r(a) r(a) a A a r(a) a A A/a A a 1 1 x r(a) n N s.t. x n a A/a n N s.t. x n = 0 x N A/a r(a) N A/a N A/a = P P SpecA/a A/a a A 1 1 r(a) = π 1 ( P) = π 1 (P) = p P SpecA/a P SpecA/a ( π : A A/a ) p A r(p) = p a p SpecA p r(p) x r(p) x n p n N p x n p x n 1 p x n 2 p x p r(p) p 33

34 a, b A r(a b) = r(a) r(b) x r(a b) n N s.t. x n a b n N s.t. x n a x n b x r(a) x r(b) x r(a) r(b) a, b A r(ab) = r(a) r(b) r(a + b) = r(r(a) + r(b)) x r(ab) n N s.t. x n ab n N, a i a, b i b s.t. x n = Σa i b i n N s.t. x n a b x r(a b) x r(a) r(b) x r(a + b) n N s.t. x n a + b n N, a a, b b s.t. x n = a + b n N s.t. x n r(a) + r(b) x r(r(a) + r(b)) a, b A r(a) + r(b) = A = a + b = A 34

35 r(a + b) = r(r(a) + r(b)) = r(a) = A 1 a + b a + b = A A a, b a + b = A a b A a 1, a 2,, a n n n a i = i=1 n n = 2 ab a b x a b a + b = 1 a a, b b i=1 a i x = x(a + b) = xa + xb ab n 3 Π n 1 i=1 a 1 = n 1 i=1 a 1 b = Π n 1 i=1 a 1 = n 1 i=1 a 1 1 i n 1 a i + a n = A x i + y i = 1 x i a i y i a n n 1 n 1 x i = (1 y i ) i=1 i=1 Π n 1 i=1 x i+y = 1 Y a n Π n 1 i=1 x i b b + a n = A n = 2 n a i = ba n = b a n = i=1 n i=1 a i A a, b a b (a : b) (a : b) = {x A xb a} b (x) (a : b) (a : x) 35

36 (a : b) A x, y (a : b) xb, yb a a A, b b (x y)b = xb yb a axb a x y, ax (a : b) A- M Ann(M) = {a A am = 0} Ann(M) A M ( annihilator) Ann(M) = 0 M A f : A B A a a f a e f(a) B a e = f(a)b = { x i y i x i f(a), y i B} B b b f ( )b c b c = f 1 (b) ( b c A ) f : A B a A b B (1) a a ec (2) b b ce (3) r(a) e r(a e ) (1), (2) (3) x r(a) e x = Σ m i=1y i b i b i B, y i f(r(a)) y i r(a) a i y i = f(a i ) i a n i i a n i N y n i i = f(a n i i ) f(a) a e N N x N a e ( n = max{n 1, n 2,, n m } N = mn ) (1), (2) 36

37 f : A B a A b B a ece = a e, b cec = b c A q( A) A xy q = x q n N s.t. y n q q A/q 0 A/q q A r(q) q A xy r(q) m N s.t. x m y m q = m N s.t. x m q n N s.t. y mn q x r(q) y r(q) r(q) A r(q) q A f : A B q B f 1 (q) A f π : B B/q π f f 1 (q) = f 1 (Ker π) π f = g ϕ g : A/f 1 (q) B/q ( ϕ : A A/f 1 (q) ) A/f 1 (q) B/q q A p p = r(q) q p A a q 1, q 2,, q n a = n i=1 a = q i a a 37 q i

38 A a a a = n i=1q i a = n i=1q i (1) i j = r(q i ) r(q j ) (2) i = 1, 2,, n j i q j q i (1) p- p-q 1, q 2 p- r(q 1 ) = r(q 2 ) = p r(q 1 q 2 ) = r(q 1 ) r(q 2 ) = p p = p xy q 1 q 2 y q 1 q 2 i (i = 1 i = 2) xy q i y q i x n q i n N x r(q i ) = p = r(q 1 q 2 ) x m q 1 q 2 m N q 1 q 2 p- (1) a A a = n i=1q i A B C A B C = A B q j q i {q 1, q 2,, q n } q i a j i a = q 1 q i 1 q i+1 q n (2) x A q A p- (1) x q (q : x) = A (2) x q (q : x) p- (3) x p (q : x) = q 38

39 (1), (3) (2) y (q : x) xy q x q y n q n N y r(q) = p q (q : x) p r((q : x)) = p (q : x) p-yz (q : x) y r(q) = p xyz q xz q z (q : x) a A a = n i=1q i a ( q i p i - ) {p 1, p 2,, p n } x A (a : x) = ( n i=1q i : x) = n i=1(q i : x) (1),(2) r((a : x)) = n i=1r((q i : x)) = x qj p i r((a : x)) r((a : x)) = p j j r((a : x)) p 1, p 2,, p n a = n i=1q i i x i q i x i j i q i (2) r((a : x i )) = p i {p 1, p 2,, p n } r((a : x)) a p i a {p 1, p 2,, p n } A S A A (1) 1 S (2) a, b S = ab S A a A 39

40 (1) A A \ {0} (2) A \ a a A (1) A a, b A, ab = 0 = a = 0 b = 0 a, b A \ {0}, ab 0 A \ {0} (2) A \ a a, b A, a, b a = ab a a, b A, ab a = a a b a a A A S A S (a, s) (b, t) def u S (at bs)u = 0 A S as as = 0 (a, s) (a, s) (a, s) (b, t) (at bs)u = 0 u S (bs at)u = 0 (b, t) (a, s) (a, s) (b, t) (b, t) (c, u) (at bs)v = (bu ct)w = 0 v, w S (at bs)uvw = atuvw bsuvw = 0 (bu ct)svw = bsuvw cstvw = 0 atuvw cstvw = (au cs)tvw = 0 (a, s) (c, u) S 1 A (a, s) S 1 A a/s S 1 A (a/s) + (b/t) = (at + bs)/st (a/s)(b/t) = ab/st well-defined S 1 A 40

41 6.2.6(1) well-defined a/s = a /s, b/t = b /t (as a s)u = 0, (bt b t)v = 0 u, v S as u = a su bt v = b tv (at + bs)s t uv = (as u)tt v + (bt v)ss u = (a su)tt v + (b tv)ss u = (a t + b s )stuv (at + bs)/st = (a t + b s )/s t (as u)(bt v) = (a su)(b tv) (abs t a b st)uv = 0 ab/st = a b /s t S 1 A A S A S 1 A a A, s, s S (1) s a/ss = a/s (2) s/s (3) 0/s (1) s(s a) (ss )a = 0 (2) (3) a/s = 0 a = 0 at = 0 t S a/s = A S A f : A S 1 A f(a) = a/1 f 41

42 a, b A f(a + b) = (a + b)/1 = a/1 + b/1 = f(a) + f(b) f(ab) = ab/1 = (a/1)(b/1) = f(a)f(b) f(1) = 1/1 = 1 f f f Ker(f) = {a A s S s.t. sa = 0} A f a Ker(f) a/1 = 0 s S s.t. sa = (1) A S = A \ {0} S 1 A A S 1 A FracA A (2) A p S = A \ p S A S 1 A A p A p (2) (1) 0 a/s S 1 A a 0 a S s/a S 1 A a/s S 1 A f : A S 1 A A S 1 A a/s as 1 A F as 1 F S 1 A A- M A S 42

43 A S A M A- M S (x, s) (y, t) def u S s.t. u(sy tx) = 0 M S S 1 M (x, s) S 1 M x/s x/s, y/t S 1 M a/u S 1 A x/s + y/t = (tx + sy)/st (a/u)(x/s) = ax/su S 1 M S 1 A f : M N A- S 1 f : S 1 M S 1 N S 1 f(x/s) = f(x)/s S 1 f S 1 A- S 1 f well-defined x/s = x /s t(s x sx ) = 0 t S ts x = tsx ts f(x) = tsf(x ) S 1 f(x/s) = f(x)/s = ts f(x)/tss = tsf(x )/tss = f(x )/s = S 1 f(x /s ) S 1 f S 1 f S 1 A- x/s, y/t S 1 M a/u S 1 A S 1 f(x/s + y/t) = S 1 f(tx + sy/st) = f(tx + sy)/st = f(x)/s + f(y)/t = S 1 f(x) + S 1 f(y) S 1 f((a/u)(x/s)) = S 1 f(ax/su) = af(x)/su = (a/u)(f(x)/s) = (a/u)s 1 f(x/s) S 1 f S 1 A f : M N A-S 1 f : S 1 M S 1 N x/s Ker S 1 f f(x)/s = 0 uf(x) = 0 u S ux Ker f ux = 0 x/s = ux/us = 0 43

44 A a, b A S A a b S 1 a S 1 b S 1 A- S 1 a, S 1 b S 1 A A a f : A S 1 A a e = S 1 Af(a) S 1 A- S 1 a S 1 A f : A S 1 A S 1 A I I = S 1 a A a x/s I s/1 S 1 A x/1 I x I c x/s I ce I I ce I ce I ( ) I = I ce a I c a a ece = a e a cec = a c ( ) A a a = a ec S 1 A 1 1 a S 1 a S A a, b A S 1 a S 1 b = S 1 (a b) α S 1 a S 1 b a a, b b, s, t S α = a/s = b/t u S (ta sb)u = 0 tua = sub a b a/s = tua/tus S 1 (a b) S 1 a S 1 b S 1 (a b) a/s S 1 (a b) a a b a/s S 1 a S 1 b 44

45 S A a A r(s 1 a) = S 1 r(a) (3) r(a) e r(a e ) S 1 r(a) r(s 1 a) x/s r(s 1 a) (x/s) n S 1 a n u(tx n s n a) = 0 t, u S a a u n t n x n = u n t n 1 s n a a utx r(a) x/s = utx/uts S 1 r(a) f : A S 1 A q A p- (1) S p S 1 q = S 1 A (2) S p = S 1 q S 1 p- (S 1 q) c = q (1) x S p x p = r(q) x n q n S x n S x n /1 S 1 q S 1 A (2) q ec = q q q ec ( ) x q ec f(x) = x/1 q e = S 1 q x/1 S 1 q a/s x/1 = a/s (sx a)t = 0 s, t S tsx = at q S p = ts p x q q ec q (S 1 q) c = q 45

46 S 1 q S 1 p-(x/s)(y/t) S 1 q y/t S 1 q (uxy sta)v = 0 u, v S a q uvxy q u, v S uv p xy q y q q x n q n N (x/s) n = x n /s n S 1 q r(s 1 q) = S 1 r(q) = S 1 p S 1 q S 1 p A S 1 A S 1 A A S f : A S 1 A a A a = n i=1q i a ( q i p i -) S p 1, p 2,, p m p m+1, p m+2,, p n m m S 1 a = S 1 q i, (S 1 a) c = i=1 S 1 a (S 1 a) c i=1 q i S 1 a = S 1 ( n i=1q i ) = n i=1s 1 q i n i=1s 1 q i = m i=1s 1 q i S 1 q i S 1 p i - p 1, p 2,, p m S 1 p 1, S 1 p 2,, S 1 p m ( i j S 1 p i = S 1 p j ) j i S 1 q j S 1 q i ( 1 i, j m) i f j i q j q i (1 i, j m) j i q j q i (1 i, j n) S 1 a = m i=1s 1 q i 46

47 m m (S 1 a) c = (S 1 q i ) c = i=1 a = n i=1q i i=1 q i a A a a p a (q ) S = A \ p S A p p A p p S (S 1 a) c = q S p p a ( ) q a A B α B A monic α n + a 1 α n a n 1 α + a n = 0 n N a i A x A A B x B (1) x B A (2) A[x] A- (3) B A- C A[x] C (4) A- A[x]- M 47

48 (1)= (2) x n +a 1 x n 1 + +a n = 0 n N a 1, a 2,, a n A x n = (a 1 x n a n ) x n {x n 1, x n 2,, x, 1} A A[x] = Ax n 1 + Ax n A (2)= (3) C = A[x] (3)= (4) M = C C y A[x] yc = 0 y 1 = y = 0 M A[x]- (4)= (1) ϕ : M M ϕ(y) = xy a = A M A[x]- ϕ(m) = xm M ϕ ϕ n + a 1 ϕ n a n = 0 n a i A M x n + a 1 x n a n M x n + a 1 x n a n = x 1, x 2,, x n B A A[x 1, x 2,, x n ] A- n n = n 1 A n 1 = A[x 1, x 2,, x n 1 ] A- x n A n 1 A n = A[x 1, x 2,, x n ] = A n 1 [x n ] A n 1 - y 1, y 2,, y m A A n 1 z 1, z 2,, z l A n 1 A n A n {y i z j 1 i m, 1 j l} A A A B C A B x, y C A[x, y] A- A[x y], A[xy] A[x, y] 6.3.2(3) x y, xy A x y, xy C 48

49 6.3.5 A B B A B A B A B A A B B A B B A A B C B A C B x B C x n + c 1 x n c n = 0 n N c 1, c 2,, c n C C = A[c 1, c 2,, c n ] C A-x C C [x] C - C [x] A x A x C A B B A ι : A B q B A p p = ι 1 (q) = q A q B p A A/p B/q π : B B/q Ker π ι = p A/p B/q x B x n + a 1 x n a n = 0 n N, a i A B/q x x n + a 1 x n a n = 0 B/q A/p A/p 0 x B/q x n + a 1 x n a n = 0 n N a i A/p n a n = (x n + a 1 x n a n 1 x) = x(x n 1 + a 1 x n a n 1 ) 49

50 B/q a n 0 (a n = 0 x n 1 + a 1 x n a n 1 = 0 n ) x 1 = a n 1 (x n 1 + a 1 x n a n 1 ) a n 1 A/p B/q x 1 B/q B/q B/q 0 y A/p y 1 B/q y 1 A/p y m + a 1 y 1 m + + a m = 0 m N, a i A/p ym 1 y 1 = (a 1 + a 2 y + a m y m 1 ) A/p A/p A B B A q q B q A = q A = q = q p = q A = q A x B x n + a 1 x n a n = 0 n N, a i A x/s B p (x/s) n + (a 1 /s)(x/s) n 1 + (a 2 /s 2 )(x/s) n (a n /s n ) = 0 x/s A p B p A p m p A p m A n, n q, q B p n n n A p = n A p = m (n A p = q p A p = (q A) p = p p = m n ) n, n B p n n n = n q = q A B C B A S A S 1 C S 1 B S 1 A 50

51 x/s S 1 C x C, s S x C A n N a i A x n + a 1 x n a n = 0 (x/s) n + (a 1 /s)(x/s) n a n /s n = (x n + a 1 x n a n )/s n = 0 x/s S 1 A S 1 C S 1 A y/t S 1 B S 1 A (y/t) m + (b 1 /t 1 )(y/t) m b m /t m = 0 n N, b i A, t i S u = t 1 t 2 t m (tu) m ((yu) m + b 1 t 2 t 3 t m t(yu) m b m t 1 t 2 t m 1 t m u n 1 )v = 0 v S yuv A yuv C y/t = yuv/tuv S 1 C A B a A B x a x a monic a B B a A B C B A a e A a C B a r(a e ) x B a x n + a 1 x n a n = 0 n N, a 1, a 2,, a n a x A x C x n = (a 1 x n 1 + a 2 x n a n ) x n a e x r(a e ) 51

52 x r(a e ) n N x n a e x n = m a i x i i=1 m N, a i a, x i C x i A M = A[x 1, x 2,, x m ] A- x n M m a i x i M am i=1 M ϕ x n x n a x a A B x B A a x K = FracA K x r(a) x a K x x 1, x 2,..., x n K L x i x K x K[t] x i x x i a K x Π(t x i ) x 1, x 2,, x n a a K A K r(a e ) = r(a) r(a) L/K α L ϕ α : L L v L ϕ α (v) = αv ϕ α K- L K ϕ α A α T : L K v L T (v) = TrA α T L T L/K Tr L/K Tr L/K (v) v ψ : L L K ψ(x, y) = Tr L/K (xy) ψ K- L/K ψ 52

53 x L ψ(x, y) = 0 y = 0 y L ψ(x, y) = 0 x = A K = FracA L K B L A K L {v 1, v 2,, v n } B n Av i i= v L v K a 0 v r + a 1 v r a r = 0 r N, a i K A a i A a r 1 0 a 0 v A L K A B L K u 1, u 2,, u n L K u i B (i = 1, 2,, n) L/K ψ 0 x L ψ(x, ) : L K K- ψ(u i, v j ) = Tr L/K (u i v j ) = δ ij L K v 1, v 2,, v n x B x x = n x i v i (x i K) i=1 u i B xu i B y L y K t m + a 1 t m a m Tr L/K (y) = [L : K(y)]a (a = A ) Tr L/K (xu i ) A 53

54 n Tr L/K (xu i ) = Tr L/K ( x j u i v j ) = j=1 n Tr L/K (x j u i v j ) = j=1 n x j Tr L/K (u i v j ) = j=1 n x j δ ij = x i j=1 x i A x n i=1 Av i B n i=1 Av i 6.4 Noether Dedekind A (1) A I (2) A (3) A a 1 a 2 n a 1 a 2 a n = a n+1 = a n+2 = (1)= (2) A a I a A {0} I I I a 0 a a 0 x a \ a 0 a 1 = a 0 + (x) a 1 a 0 a 1 a 0 a = a 0 a (2)= (3) A (a i ) i N a = i N a i A a a = (x 1, x 2,, x r ) x 1, x 2,, x r a n n N a = a n a n = a n+1 = (3)= (1) A I a I a b b I I Noether (1) (3) 54

55 6.4.4 A Noether A S S 1 A Noether A a A/a Noether S 1 A A a a ec = a 1 1 S 1 A A/a A a 1 1 A/a A Noether A p A p Noether B ϕ : A B B Noether A p B ϕ B A A/a A Noether B B A- B Noether A- M M A- M Noether A- A, B B B A- B Noether A- B Noether Notether A M Noether M A A n A n Noether A- n A n Noether A- A π : M N A- N ker π Noether A- M Noether A- M A- M 1 M 2 π(m 1 ) π(m 2 ) (M 1 ker π) (M 2 ker π) 55

56 π(m n ) = π(m n+1 ) = (M n ker π) = (M n+1 ker π) = n M n = M n+1 = M Noether A a,b,c a = b c = a = b a = c a Noether A Σ = {a a A} Σ Σ a a a = b c A b, c( a) a b, c a Noether A a A xy a x a n N y n a (a : (y)) (a : (y 2 )) (a : (y 3 )) (a : (y n )) = (a : (y n+1 )) n N a (a + (x)) (a + (y n )) a = α + sx = β + ty n α, β a, s, t A ay = yα + sxy a ay = yβ + ty n+1 ty n+1 = 56

57 ay yβ a t (a : (y n+1 )) = (a : (y n )) ty n a a = β + ty n a (a + (x)) (a + (y n )) a a (a + (x)) (a + (y n )) a = (a + (x)) (a + (y n )) x, y n a a + (x), a + (y n ) a a n N y n a a A Noether (1) A Noether a A r(a) n a n N A Noether r(a) r(a) = (x 1, x 2,, x m ) x i r(a) i x k i i a k i N n N ( n = Σ m i=1(k i 1) + 1 ) Σl i = n l 1, l 2,, l m N x l 1 1 x l 2 2 x l m a r(a) n = A{x l 1 1 x l 2 2 x l m Σl i = n} a A a 0 a 1 a n n A A dima Noether A 0 A 0 a A A m A a = m n n N A 1 m A a m- A Noether r(a) n = m n a n N n m n a m n 1 a 57

58 m 0 a m r((a)) = m m n (a) m n 1 (a) n N m n 1 \(a) b m n 1 \ (a) x = a/b FracA x 1 A x 1 = b/a A = b = b/1 = (b/a)(a/1) = x 1 a (a) b x 1 A A x 1 A x 1 m m (x 1 m m m A[x 1 ]-FracA m A[x 1 ]- A Noether m A- x 1 A ) x 1 = b/a y m by m n (a) by = az z A x 1 y = by/a = az/a = z A x 1 m A x 1 m A m x 1 m = A m = Ax = (x) (x 1 m = A x m ) m n a x n a A m = (x) c A k N cx k a \ m n ( a x n ) a \ m n dx l ( d A, l < n) x l a (x n 1 ) = m n 1 a n a \ m n = a = (x n ) = m n Noether Dedekind Dedekind 0 0 q Dedekind A q = m n m n N Dedekind 1 0 q( 0) r(q) 58

59 q m- m A m A m Dedekind q S 1 q S 1 q A m S 1 m S 1 q = (S 1 m) n = S 1 m n m n m m n m- q = m n A Dedekind 0 a A a A m 1, m 2,...,m s ( ) a = m 1 m 2 m s ( ) a A Noether a a = n i=1q i a ( q i n i -) A 1 A 0 n 1, n 2,..., n n q 1, q 2,...,q n n i=1q i = Π n i=1q i a = Π n i=1q i a q i Π n i=1q i q i n i=1q i = Π n i=1q i n i = r(q i ) n i a q i a q i a a = n i=1q i = Π n i=1q i a K O K Dedekind K n Q K/Q n O K Zv i K Q {v 1, v 2,, v n } O K Z- Z PID Noether i=1 59

60 O K Noether O K O K 1 O K 0 p O K (0) O K (0) Z = (0) p Z (0) p Z Z p O K [1],,, I(,2005) [2] M.F.Atiyah,I.G.MacDonald, Introduction to Commutative Algebra (Westview Press,1969) [3],, (,2011) [4] Paulo Ribenboim,, (,1983) [5], (,1986) [6], 2 (,2010) 60

Jacobson Prime Avoidance

Jacobson Prime Avoidance 2016 2017 2 22 1 1 3 2 4 2.1 Jacobson................. 4 2.2.................... 5 3 6 3.1 Prime Avoidance....................... 7 3.2............................. 8 3.3..............................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a 1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 { 04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory

More information

untitled

untitled 1 ( 12 11 44 7 20 10 10 1 1 ( ( 2 10 46 11 10 10 5 8 3 2 6 9 47 2 3 48 4 2 2 ( 97 12 ) 97 12 -Spencer modulus moduli (modulus of elasticity) modulus (le) module modulus module 4 b θ a q φ p 1: 3 (le) module

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1 (, Goo Ishikawa, Go-o Ishikawa) ( ) 1 ( ) ( ) ( ) G7( ) ( ) ( ) () ( ) BD = 1 DC CE EA AF FB 0 0 BD DC CE EA AF FB =1 ( ) 2 (geometry) ( ) ( ) 3 (?) (Topology) ( ) DNA ( ) 4 ( ) ( ) 5 ( ) H. 1 : 1+ 5 2

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id 1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n Part2 47 Example 161 93 1 T a a 2 M 1 a 1 T a 2 a Point 1 T L L L T T L L T L L L T T L L T detm a 1 aa 2 a 1 2 + 1 > 0 11 T T x x M λ 12 y y x y λ 2 a + 1λ + a 2 2a + 2 0 13 D D a + 1 2 4a 2 2a + 2 a

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1) ( ) 1., : ;, ;, ; =. ( ).,.,,,., 2.,.,,.,.,,., y = f(x), f ( ).,,.,.,., U R m, F : U R n, M, f : M R p M, p,, R m,,, R m. 2009 A tamaru math.sci.hiroshima-u.ac.jp 1 ,.,. 2, R 2, ( ).,. 2.1 2.1. I R. c

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W 3 30 5 VI VI. W,..., W r V W,..., W r W + + W r = {v + + v r v W ( r)} V = W + + W r V W,..., W r V W,..., W r V = W W r () V = W W r () W (W + + W + W + + W r ) = {0} () dm V = dm W + + dm W r VI. f n

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

3 m = [n, n1, n 2,..., n r, 2n] p q = [n, n 1, n 2,..., n r ] p 2 mq 2 = ±1 1 1 6 1.1................................. 6 1.2......................... 8 1.3......................... 13 2 15 2.1.............................

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m 2009 IA I 22, 23, 24, 25, 26, 27 4 21 1 1 2 1! 4, 5 1? 50 1 2 1 1 2 1 4 2 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k, l m, n k, l m, n kn > ml...? 2 m, n n m 3 2

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

solutionJIS.dvi

solutionJIS.dvi May 0, 006 6 morimune@econ.kyoto-u.ac.jp /9/005 (7 0/5/006 1 1.1 (a) (b) (c) c + c + + c = nc (x 1 x)+(x x)+ +(x n x) =(x 1 + x + + x n ) nx = nx nx =0 c(x 1 x)+c(x x)+ + c(x n x) =c (x i x) =0 y i (x

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

DVIOUT-HYOU

DVIOUT-HYOU () P. () AB () AB ³ ³, BA, BA ³ ³ P. A B B A IA (B B)A B (BA) B A ³, A ³ ³ B ³ ³ x z ³ A AA w ³ AA ³ x z ³ x + z +w ³ w x + z +w ½ x + ½ z +w x + z +w x,,z,w ³ A ³ AA I x,, z, w ³ A ³ ³ + + A ³ A A P.

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37 4. 98 () θ a = 5(cm) θ c = 4(cm) b = (cm) () D 0cm 0 60 D 99 () 0m O O 7 sin 7 = 0.60 cos 7 = 0.799 tan 7 = 0.754 () xkm km R km 00 () θ cos θ = sin θ = () θ sin θ = 4 tan θ = () 0 < x < 90 tan x = 4 sin

More information

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc + .1 n.1 1 A T ra A A a b c d A 2 a b a b c d c d a 2 + bc ab + bd ac + cd bc + d 2 a 2 + bc ba + d ca + d bc + d 2 A a + d b c T ra A T ra A 2 A 2 A A 2 A 2 A n A A n cos 2π sin 2π n n A k sin 2π cos 2π

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α 20 6 18 1 2 2.1 A B α A B α: A B A B Rel(A, B) A B (A B) A B 0 AB A B AB α, β : A B α β α β def (a, b) A B.((a, b) α (a, b) β) 0 AB AB Rel(A, B) 1 2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1

More information

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ { K E N Z OU 2008 8. 4x 2x 2 2 2 x + x 2. x 2 2x 2, 2 2 d 2 x 2 2.2 2 3x 2... d 2 x 2 5 + 6x 0 2 2 d 2 x 2 + P t + P 2tx Qx x x, x 2 2 2 x 2 P 2 tx P tx 2 + Qx x, x 2. d x 4 2 x 2 x x 2.3 x x x 2, A 4 2

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information