05/09/2009

Similar documents
21 Daya Bay θ 13 Lawrence Berkeley National Laboratory Brookhaven National Laboratory 2012 ( 24 ) Daya Bay 2011

Microsoft PowerPoint - okamura.ppt[読み取り専用]

untitled

スーパーカミオカンデにおける 高エネルギーニュートリノ研究

1 223 KamLAND 2014 ( 26 ) KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR ν e ν µ ν τ ν 1 ν 2 ν MNS m 2 21

nakajima_


Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

HK-Yokoyama-ICRR2013.key

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

Solar Flare neutrino for Super Novae Conference

2 内容 大気ニュートリノ スーパーカミオカンデ ニュートリノ振動の発見 検証 今後のニュートリノ振動の課題

150518_shin_gakujutsu

Mott散乱によるParity対称性の破れを検証

MEG μ + e + γ ( ) ( MEGA) = (BSM) MEG μ + e + γ ( : a few ) 180 γ μ + e +

目次 T2K 実験 ニュートリノ振動解析 外挿 ( 前置検出器 後置検出器 ) の 手法 Toy MCによるデモンストレーション まとめ 2

Strangeness spin in the proton studied with neutrino scattering

GJG160842_O.QXD

LHC-ATLAS Hà WWà lνlν A A A A A A

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

Drift Chamber

Microsoft PowerPoint - KEKseminar pptx

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

25 3 4

all.dvi

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (


nenmatsu5c19_web.key

T2K 実験 南野彰宏 ( 京都大学 ) 他 T2Kコラボレーション平成 25 年度宇宙線研究所共同利用成果発表会 2013 年 12 月 20 日 1

untitled

Present Situation and Problems on Aseismic Design of Pile Foundation By H. Hokugo, F. Ohsugi, A. Omika, S. Nomura, Y. Fukuda Concrete Journal, Vol. 29

*1 *2 *1 JIS A X TEM 950 TEM JIS Development and Research of the Equipment for Conversion to Harmless Substances and Recycle of Asbe

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

スライド 1

高等学校学習指導要領

高等学校学習指導要領

抄録/抄録1    (1)V

2013SuikoMain.dvi

05Mar2001_tune.dvi

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

橡実験IIINMR.PDF

35

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Gmech08.dvi

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [


70 : 20 : A B (20 ) (30 ) 50 1

OPA134/2134/4134('98.03)

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

3 M=8.4 M=3 M=.8 M=4.7 M=5.6 M=3 M=5. M=4.6 M=7 M=3 M= (interaction) 4 - A - B (main effect) - A B (interaction)

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

Myers, Montgomery & Anderson-Cook (2009) Response Surface Methodology

TOP URL 1

橡博論表紙.PDF

スライド 1

Kaluza-Klein(KK) SO(11) KK 1 2 1

rcnp01may-2

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

all.dvi

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

untitled

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =


Electron Ion Collider と ILC-N 宮地義之 山形大学

untitled

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

B

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary

TeV b,c,τ KEK/ ) ICEPP

Part () () Γ Part ,

untitled

JIS Z803: (substitution method) 3 LCR LCR GPIB

,149, , ,989226, , ,200168, , , ,464

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6


untitled

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

Microsoft Word - 章末問題

[1] 2 キトラ古墳天文図に関する従来の研究とその問題点 mm 3 9 mm cm 40.3 cm 60.6 cm 40.5 cm [2] 9 mm [3,4,5] [5] 1998

Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973)

TOP URL 1

LEPS

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,


vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

J-PARC October 14-15, 2005 KEK

Undulator.dvi

XFEL/SPring-8

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

Transcription:

05/09/2009

* DoubleChooz, RENO, Dayabay *

ν ν "(# e + p $ e + + n) ν ν ν ν are produced in β-decays of fission products. ~ 6!10 20 " e / s / reactor ν E " ~ 4 +4 #2 MeV 090314 F.Suekane, TIPP09 3

( ) $ 1% sin 2 2& 13 sin 2 'm 13 P " e # " e 2 L 4E % cos4 & 13 sin 2 2& 12 sin 2 'm 12 4E Reactor Neutrino Oscillation 2 L 1.2 1 sin 2 2θ 13 0.8 P(!e -->!e ) 0.6 0.4 0.2 Normal Hierarchy Inverted Hierarchy sin 2 2θ 13 =0.1 assumed ~sin 2 2θ 12 0 1 10 100 1000 DC, DB, RENO L(km) KamLAND

sin 2 2θ 13 upper limit CHOOZ reactor (ν e --> ν e ) experiment L=1km D=300mwe sin 2 2θ 13 <0.15 @Δm 2 =2.5x10-3 ev 2

CHOOZ sin 2 2" 13 ~ 0.2 Reactor Near Detector (N N ) Far Detector (N F ) L N L F ~1.5km Use near and far detector of identical structure to cancel systemaic uncertainties of ν flux and detector response.

Reactor-θ 13 Site Map >2007 RENO Double Chooz Daya Bay

Double Chooz Experiment to detect the 3rd ν Oscillation using reactor ν. 0.4km 1.05km P=8.4GWth 08.03.25 suekane @ JPS 8

2004-2007: Detector Design Calibration Glove-Box : Outer Veto : Scintillator panels Target ν : LS; 80% C 12 H 26 + 20% PXE +0,1% Gd + PPO + Bis-MSB 10,3 m 3 γ Catcher : LS; 80% C 12 H 26 + 20% PXE + PPO + Bis-MSB 22,6 m 3 Non scintillating Buffer : mineral oil 114 m 3 7 m Buffer vessel & 390 10 PMTs : Stainless steel 3 mm Inner Muon Veto : mineral oil + 70 8 PMTs 90 m 3 Steel Shielding : 17 cm steel, All around 7 m

ν e event selection Δt " E! ~ 8MeV e + ΔT n E=1~8MeV e + E=8MeV n τ~30µs E vis E vis - Only 3 main cuts. => small room for systematic uncertainty - Detection Efficiency is insensitive to the cut parameters

Sensitivity in Time sin 2 2θ 13 limit σ sys =0.6% Far+Near Detectors σ sys =2.6% Far Detector only 5 x better than current limit 2010 2011 2012 2013 2014

DC, Dayabay, RENO Double Chooz Daya Bay RENO Double Chooz Dayabay RENO Power(GWth) 8.2GW 11.6GWth (17.4GW>2012) 16.1GW Detector(ton) 8 80 16 Baseline(km) 1.05 1.8 1.4 sin 2 2θ 13 Sensitivity ~0.03 ~0.01 ~0.02

ν-detector Double Chooz Daya Bay RENO M=8ton N=1+1 M=20ton N=2+2+4 M=16ton N=1+1

Double Chooz Status DOUBLE CHOOZ suekane @ far IPMU detector FW 14

Veto PMT Installed. (2009.2) Detector Tank is ready. (2008.

6/2009 Botton & Side PMT (330) installation finished (under Japanese leadership)

9/2009 Acrylic Vessels being installed 12/ Electronics installation 1/2010 Scintillator filling 4/2010 Commissioning

Staus of Slides: from Courtesy of Prof. Kam_Biu Luk & Prof. Karsten Heeger (2009.3)

Civil Construction Inside tunnel Stainless steel tank in China 4-m vessel in the U.S.

Daya Bay: Milestones (by Kam Bieu ) Daya Bay is fully funded. Civil and detector construction is well on the way. Beneficial occupancy of Surface Assembly Building March 2009 Assembly of first two ADs in SAB Summer 2009 Data-taking in Near Halls Summer 2010 Data-taking with all eight detectors Summer 2011

Current Status of RENO Slides: Courtesy of Prof. Soo Bong Kim 2009.3

RENO Near and Far Tunnels are ready No Detector Photos

Summary of Construction Status (by Soo Bong Kim)

Summary of DC, DB, RN 2009 2012 2010 2011 2013 2014 DoubleChooz DayaBay RENO Far Near Far Near Far Near DC, Dayabay and RENO finally start data taking within a year.

(1) sin 2 2θ 13 (2)Mass Hierarchy (3)θ 23 (4) CP δ (1) ν µ =>ν e (2) ν µ =>ν e (3) Matter effect baseline (4) ν e =>ν e

E-L Relation of Oscillation Experiments Up to now Future Reactor Prospect Opera Reactor (2~8MeV) Accelerator LSND Bugey Goesgen MiniBooNE PaloVerde CHOOZ DChooz K2K MINOS NOVA T2K KamLAND DayaBay RENO 080520 F.Suekane@PMN08 26

Very precise θ13 KamLAND Reactor Neutrino Oscillation 1.2 sin22θ13=0.1 assumed P(!e -->!e ) 1 0.8 0.6 0.4 Normal Hierarchy 0.2 Inverted Hierarchy 0 1 10 100 1000 L(km) Δm213 080520 Very precise θ12 Mass Hierarchy F.Suekane@PMN08 27

Physics @ 1 st Δm 2 13 Maximum (L~1.5km) = Very Precise θ 13 P.Hauber et al. hrp-ph/0303232 RENO DC DB KamLAND- @ Distortion normalization => δsin 2 2θ 13 <0.01

Target 8 210 ton Arxive hep-ph/0601266v1

Complementarity of Reactor-accelerator θ 13 measurement θ 23 degeneracy 0.50 ± 0.11 (" µ # " e ) = ( 1! 0.00017L[ km] ) 2 sin2 2$ 13 ± 0.045sin2$ 13 sin% Matter effect P AC δ dependece L=300km Yasuda Accelerator Measurement Reactor Measurement 080520 30

θ 23 Accelerator 4MW*0.54Mt 2+6years Reactor: 100t*4.2y@ 24GW

Quick Access to δ CP δ CP =-π/2 δ CP =0 δ CP =π/2 δsin 2 2θ 13 =0.005 θ 23 degeneracy Mass Hierarchy θ 13 ν sinδ

non-0 δ 100 4.2year@ 1000 4.2year@ H.Sugiyama hep-ph/0411209v1 sin 2 2θ 13 >0.05

Physics @ 1 st Δm 2 12 Maximum(L~50km) = Very Precise θ 12 & Mass Hierarchy 50km Reactor Neutrino Oscillation 1.2 1 P(!e -->!e ) 0.8 0.6 0.4 0.2 0 1 10 100 1000 L(km)

( ) =1$ cos4 % 13 sin 2 2% 12 sin 2 & 21 ( P " e # " e Physics @ 1 st Δm 2 12 Maximum ') *) +sin 2 2% 13 cos 2 % 12 sin 2 & 31 + tan 2 % 12 sin 2 & 32 ( ) + ), -) 1" sin 2 2# 12 θ 12 sin 2 2" 12 sin 2 " 31 + tan 2 # 12 sin 2 " 32 sin 2 " 31 + tan 2 # 12 sin 2 " 32 Mass Hierarchy

θ 12 H.Minakata, hep-ph/07-1070 1kton 2.5y@ " sin 2 # 12 ~ 2.4% ( 1$ ) sin 2 # 12 Global fit " sin 2 # 12 ~ 6.3% ( 1$ ) sin 2 # 12 solar + KamLAND

Mass Hierarchy " sin 2 2# ( 13 sin 2 $ 31 + tan 2 # 12 sin 2 $ 32 ); $ ij = $m ij 4E ~0.4 2 => Δm 2 23 Δm2 13 amplitude 2 L

Δ 31 J.Learned et al. arxive-0612022 Inverted Hierarchy Normal Hierarchy Δ 32 simulation sin 2 2" 13 = 0.05 3kton* yr @ 1σ M.H.

Physics @ Δm 2 13 2nd Maximum (L~5km) 1.2 1 Reactor Neutrino Oscillation P(!e -->!e ) 0.8 0.6 0.4 0.2 0 1 10 100 1000 L(km) Precise "m 13 2 It is not yet clear about the significance of this measurement.

θ 13 : DoubleChooz, RENO, Dayabay 2010 Sensitivity sin 2 2θ 13 =0.01~0.03 Future High Precision θ 13 ; M~100 @K-K sin 2 2θ 13 <0.01 KASKA-II, Triple Chooz θ 23 Degeneracy with accelerator early sinδ detection with accelerator L=50km, M~3Kton(KK ) High Precision θ 12 ; "sin 2 # 12 sin 2 # 12 ~ 2.4% 1$ Mass hierarchy ( ( )) θ 13 -