14 Preparation and characterization of barium strontium titanate thin films 1055086
1 1.1 1 1.2 1 1.3 2 1.4 3 44 2 2.1 5 2.2 5 2.2.1 5 2.2.2 8 2.3 2.3.1 X 9 2.3.2 11 2.3.3 13 2.3.4 X 15 2.4 2.4.1 LCR 16 16 2.4.2 Sawyer-Tower 18 18 2.5 20 20 20 3 (Ba x Sr 1-x )TiO 3 3.1 21 21 3.2 22 22 3.3 SrTiO 3 22 22 3.4 Pt(100)/MgO(100) 23 23 3.5Pt(100)/MgO(100) (Ba x Sr 1-x )TiO 3 24 24 3.5.1-25 25 3.5.2 26 26 3.5.3 27 27 3.5 29 29 31 31 4 (Ba x Sr 1-x )TiO 3
4.1 32 32 4.2 (Ba x Sr 1-x )TiO 3 32 32 4.3 (Ba x Sr 1-x )TiO 3 34 34 4.4 (Ba x Sr 1-x )TiO 3 36 36 4.4.1 36 36 4.4.2 37 37 4.5 Ba/(Ba+Sr) x Sr 1-x )TiO 3 38 38 4.5.1(Ba 0.6 Sr 0.4 )TiO 3 39 39 4.5.2(Ba 0.6 Sr 0.4 )TiO 3 39 39 4.6 40 40 41 41 5 Ti/(Ba+Sr) 5.1 42 42 5.2Ti/(Ba+Sr) x 1-x )TiO 3 42 42 5.3Ti/(Ba+Sr) 43 5.4Ti/(Ba+Sr) 44 5.5 Ti/(Ba+Sr) 45 45 5.6 46 46 46 46 6 (Ba x Sr 1-x )TiO 3 6.1 47 47 6.2(Ba x Sr 1-x )TiO 3 47 47 6.2.1 (Ba x Sr 1-x )TiO 3 48 48 6.2.2 50 50 6.2.3 51 51 6.2.4 53 53 6.2.5(Ba x Sr 1-x )TiO 3 56 56 6.3 58 58 59 59 7 7.1 60 60
1 1.1 (FeRAM)Dynamic Random Access Memory(DRAM) (1) MOS FeRAM (2) (Pb(Zr,Ti)O 3 ) 1Gbit DRAM ((Ba x Sr 1-x )TiO 3 ) (3) 1.2 ( ) ABO 3 1.1 A O B P E 1.2-1 -
cf (P r )b E=0 (P s )dg (E r ) 2 2 (4) T c Curie-Weiss (3) A B O 1-1 1-2 1.3 ((Ba x Sr 1-x )TiO 3 ) 120 (Pb(Zr,Ti)O 3 ) 400 (Ba x Sr 1-x )TiO 3 ( 10,000 )DRAM (Ba x Sr 1-x )TiO 3 (Ba x Sr 1-x )TiO 3 (Ba x Sr 1-x )TiO 3 BaTiO3 SrTiO3 Ba/(Ba+Sr)Ti/(Ba+Sr) (Ba x Sr 1-x )TiO 3-2 -
(Ba x Sr 1-x )TiO 3 Ba/(Ba+Sr) Ti/(Ba+Sr) BaTiO 3 (Ba x Sr 1-x )TiO 3 (5),(6) A Ba Sr Ba/(Ba+Sr) Pt (Ba x Sr 1-x )TiO 3 (Ba x Sr 1-x )TiO 3 1.4 7 1 2 X 3 (Ba x Sr 1-x )TiO 3 (x=1.00.5) 4 (Ba x Sr 1-x )TiO 3 Pt(100)/MgO(100) Ba/(Ba+Sr) 5 Ti/(Ba+Sr) 6 (Ba x Sr 1-x )TiO 3 (Ba x Sr 1-x )TiO 3 7-3 -
(1) P. Y. Leasaichene, et al IEDM Tech. Dig. 831 (1994) (2), IC RRAM,, (1996) (3), DRAM, (4) pratt, I.H. Proc, IEEE, 59, 1440, 1971 (5),,, (1997) (6), (Ba,Sr)TiO 3 DRAM,, (1993) - 4 -
- 5-2 2.1 2.2 2.2.1 2.1 (1) 2.1
- 6 - (2) (BaxSr1-x)TiO3 Pt 1 2.2 RF (BaxSr1-x)TiO3 A B 2.3 3 Pt Pt
- 7 - Ar O2 L C2 C1 (13.56MHz 2.2 (a) A B A B (b) B A B 2.3
- 8 - ) ( ) ( ) ( 10 6. 2 4 1 1 2 24 = = s m K T M Pa P nv J e e 2.2.2 1 2 T(K) Pe(Pa) Je (M T a (a1)) Pe nm (3) (W)W Au 2.1 Au 2.4 2.1Au 79 197.20 19.3 1063 12001600 WMo 2.4 W
9 2.3 2.3.1X X X X X X X 3 X X? d X? 2dsin?n? 2.5 X X X TiO2 2.5 X
X X X X X 2.6 2 X X 2 X X X ( ) X X X X NaI X 2.6 X 10
11 2.3.2 ( )? µ? s? i±? µ? i 0 ( ) 0 0 32 (4) (5) 2.7 3 (514.5 nm) 514.5 nm 2 ( ) TO
12 CCD 514.5 nm 2 2400 /mm 1800 /mm CCD PC 2.7
13 2.3.3 (SEM)nm 2.8 2.8 (SE) ( BSE) X ( ) (6) SEM 2.9 1kV40kV nm (AFM) AFM 2.8 2.9SEM
2 U(r) Lenard-Jones σ U( r) = 4ε r 12 σ r es r (7) 2.10 AFM AFM 3 (8) 100µm200µm 10 9 N/ AB (A-B) Z xy xy z 3 Ret CPU CRT Z 6 A B XY 2.10AFM 14
2.3.4 X X 2.11 0 10nm X X X X (9) 2.12 X X X d? X 2.11 X 2.12 X ( ) 15
16 2 2 1 tan X R Z R X jx R Z + = = + = θ 2 2 1 tan B G Y G B jb G Y + = = + = φ 2.2.2 LCR LCR LCR Z? Z Z Z (O)? (deg.)r (O)X (O) Y Y Y (O)G (S)B (S) 2.13 Z Y 2.13 Z Y j Z Z X R Y Y G B j
17 2 V I V I?? LCR 2 2.14 (ESR) (10) LCR HCUR ( )HPOT ( High )LPOT ( Low )LCUR ( )GUARD 5 2.14
18 2.2.3 Sawyer-Tower 90 180 90 1 Sawyer-Tower Sawyer-Tower 2.15 P E (11) O-A-B-M M 0 OR 0 MB OS OF( ) 0 (F-M ) M -R -B 2.15P-E M R F M E P F R B S
P-E Sawyer-Tower 2.16 Cx C0(C0 Cx) C0Cx C0 Q V = Q C 0 Vx Cx +q -q +q V C0C0Cx -q Vx 2.16Sawyer-Tower 19
2.4 (1),,, (1991) (2),,, (1998) (3),,, (1994) (4),,, (1995) (5),,, (1988) (6), QA,, (1996) (7), RD, vol.31 No.2 (1996.6) (8),,, (1995) (9),,, (1996) (10),, 70, 11, (2001) (11), 20
3 (Ba,Sr)TiO3 3.1 (1) ((BaxSr1-x)TiO3) (Pb(Zr,Ti)O3) (2) (SrBi2Ta2O9) (3) Pb Bi LSI Si (4) (BaxSr1-x)TiO3 MOCVD (BaxSr1-x)TiO3 (BaxSr1-x)TiO3 RF RF (BaxSr1-x)TiO3 21
3.2 SrTiO 3 pellet BaTiO 3 (5)(6) 3.1 BaTiO3 10mm SrTiO3 SrSrO SrSrO SrTiO3 3.1 3.3 SrTiO3 BaTiO3 SrTiO3 (BaxSr1-x)TiO3 MgO(100)MgO(100)(Ba,Sr)TiO3 1.0 (7) Si (100) (8) MgO Si MgO 3.2 BaTiO3 SrTiO3 070 Ba/(Ba+Sr) 0.8 0.6 0.4 0.2 0.0 0 10 20 30 40 50 60 70 area ratio of STO/BTO target (%) 3.2BaTiO3 SrTiO3-22 -
MgO (BaxSr1-x)TiO3 Ba/(Ba+Sr)SrTiO3 Sr SrTiO3 60 Ba/(Ba+Sr) SrTiO3 3.4Pt(100)/MgO(100) (9) Pt MgO Pt 3.1 (BaxSr1-x)TiO3 c (001) Pt 3.1Pt(100) Pt (100) Substrate MgO(100) Pt Temperature 700 Pressure 1.0 Pa (111) Rf Power 70 W Ar : O2 1 :1 Thickness 100 nm MgO (100) - 23 -
3.5Pt(100)/MgO(100) (BaxSr1-x)TiO3 Pt(100)/MgO(100)Ba0.9Sr0.1TiO3Ba0.5Sr0.5TiO3 Ar/O2 Ba0.8Sr0.2TiO3 Ar Thornton 4 (10) 3.3 Thornton 1(ZONE-1) Ar (TS/TM<0.3) 3.3Thornton T(ZONE-T) Ar (TS/TM<0.3) 2 1 T(Transition- ) 3(ZONE-2) TS/TM>0.3 1 T T 4(ZONE-3) TS/TM>0.5 3.3 TS - 24 -
Thornton 0.3<TS/TM<0.5 (Ba,Sr)TiO3 1600 546 RF Power 90W 3.5.1 1.0 ( T-S ) Ba/(Ba+Sr) 1.4 1.3 1.2 1.1 0.9 0.8 Ba/(Ba+Sr) Ti/(Ba+Sr) 1.4 1.3 1.2 1.1 1.0 0.9 0.8 Ti/(Ba+Sr) Ba0.8Sr0.2TiO3 0.5 BaTiO3 SrTiO3 3.2 35 3.4 T-S 50 52 54 56 58 60 0.5PaAr/O2 3/1 Ba/(Sr+Sr)T-S 0.8 Ti./(Ba+Sr)T-S 55mm 0.7 0.6 Substrate distance (mm) 3.4 Ti 3.5 0.7 0.6 0.5 60 mm 60 mm MgO(200) (101) Pt(200) (002) Intensity (202) TiO 2 (003) (001) (202) 62 64 66 68 70 72 2 q (deg.) Intensity (arb. units) 55 mm (003) Intensity (202) (003) 55 mm 50 mm 62 64 66 68 70 72 2 q (deg.) 50 mm (202) Intensity 10 20 30 40 50 60 70 80 2q (deg.) TiO 2 (003) 3.5T-S 62 64 66 68 70 72 XRD 3.6 XRD 2 q (deg.) - 25 -
T-S XRD 3.6 XRD T-S 55mm XRD (Ba0.8Sr0.2)TiO3 T-S 50 60mm TiO2 TiO2 3.4 T-S 50 60mm Ti Ti TiO2 3.7 XRD FWHM T-S 55mm (001) Ba0.8Sr0.2TiO3 Pt XRD Pt T-S 55mm (001)/(001)+(101) FWHM 1.0 0.8 0.6 0.4 0.2 0.0 0.21 0.20 0.19 0.18 0.17 50 52 54 56 58 60 Substrate distance (mm) 3.7XRD FWHM 3.5.2 Ar O2 Ba0.8Sr0.2TiO3 T-S 55mm 0.5Pa 3.8 Ar O2 Ar O2 T-S 1.4 Ba/(Sr+Sr) Ti/(Ba+Sr) 0.8 O2 25 Ba/(Ba+Sr) 2.2 2.0 1.8 1.6 1.2 1.0 0.6 20 25 30 35 40 45 50 O 2 /(Ar+O 2 ) (%) Ba/(Ba+Sr) Ti/(Ba+Sr) 3.8Ar/O2 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 Ti/(Ba+Sr) - 26 -
O2 25 0.8 (11) 3.9 XRD O2 FWHM (001)/(001)+(101) 1.0 0.6 0.4 0.2 0.32 0.28 0.24 0.20 0.16 0.12 15 20 25 30 35 40 45 50 55 O 2 /(Ar+O 2 ) (%) 3.9XRD FWHM FWHM 3.10 SEM 20 33 50SEM 25 O 2 : 20 % O 2 : 25 % O 2 : 33 % O 2 : 50 % O2 25 3.10 SEM 3.5.3 Ba0.8Sr0.2TiO3-27 -
T-S 55mmAr/O2=3/1 3.11 Ba/(Ba+Sr)1.5Pa 1.5Pa 0.8 2.5Pa Ba/(Ba+Sr)=0.72 Ti/(Ba+Sr) BaSrTiO (12) O Ti O Ti (001)/(001)+(101) FWHM 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.12XRD FWHM Ba/(Ba+Sr) 1.0 0.8 0.6 0.4 0.2 0.65 0.60 0.55 0.50 0.45 0.40 0.5 1.0 1.5 2.0 2.5 Pressure (Pa) 3.12 XRD 3.13 SEM FWHM 2.5Pa 1.5Pa 1Pa 0.5Pa SEM 1.8 1.6 1.4 1.2 1.0 0.6 Ba/(Ba+Sr) Ti/(Ba+Sr) Pressure (Pa) 3.11 1.8 1.6 1.4 1.2 1.0 0.8 0.6 Ti/(Ba+Sr) - 28 -
0.5Pa 2.5 Pa 1.5 Pa 1.0 Pa 0.5 Pa 3.6 3.13 SEM BaTiO3 SrTiO3 Pt(100)/MgO(100) (BaxSr1-x)TiO3 (Ba0.8Sr0.2)TiO3 3.2 BaTiO3 (Ba0.9Sr0.1)TiO3 (Ba0.8Sr0.2)TiO3 (Ba0.7Sr0.3)TiO3 (Ba0.6Sr0.4)TiO3(Ba0.5Sr0.5)TiO3 3.2 (BaxSr1-x)TiO3 (Ba0.9Sr0.1)TiO3 Substrate Pt(100)/MgO(100) STO pellet/bto target 30 % Temperature 546 T-S distance 50 cm RF Power 90 W Pressure 0.5 Pa Ar : O2 3 :1 (Ba0.8Sr0.2)TiO3 Substrate Pt(100)/MgO(100) STO pellet/bto target 36 % Temperature 546 T-S distance 55 cm RF Power 90 W Pressure 0.5 Pa Ar : O2 3 :1-29 -
(Ba0.7Sr0.3)TiO3 Substrate Pt(100)/MgO(100) STO pellet/bto target 47 % Temperature 546 T-S distance 60 cm RF Power 90 W Pressure 1.5 Pa Ar : O2 3 :1 (Ba0.6Sr0.4)TiO3 Substrate Pt(100)/MgO(100) STO pellet/bto target 53 % Temperature 546 T-S distance 55 cm RF Power 90 W Pressure 0.5 Pa Ar : O2 3 :1 (Ba0.5Sr0.5)TiO3 Substrate Pt(100)/MgO(100) STO pellet/bto target 54 % Temperature 546 T-S distance 50 cm RF Power 90 W Pressure 1.5 Pa Ar : O2 3 :1 BaTiO3 Substrate Pt(100)/MgO(100) STO pellet/bto target 0 % Temperature 546 T-S distance 57 cm RF Power 250 W Pressure 0.8 Pa Ar : O2 3 :1 30
(1) K. Koyama, T. Sakuma, S. Yamammichi, H. Watanabe and H. Aoki IDEM 91 823~826. (1991) (2) Won-Jae Lee, Young-Min Kim and Ho-Gi Kim Thin Solid Films 269 75~79 (1995) (3) H. N. Al-Shareef, D. Dimons, T. J. Boyle, W. L. Warren, and B. A. Tuttle Appl. Phys. Lett. 68 (5) (1996) (4) S. Matsubara, T. Sakuma, S. Yamamichi and Y. Miyasaka. Mat. Res. Soc. Symp. Proc. 200, 243 (1990) (5) T. hata, S. Kawagoe, W. Zhang, K. sakai and Y. Yoshioka Vacuum Vol.51 No. 665~671 (1998) (6) Jr-Deok Kim, S. Kawagoe, K. Sasaki and T. Hata Jpn. J. Appl. Phys. Vol.38 (1999) (7),,, (1999) (8) Y. Yoshimura, K. Hamaishi, Y. Kamino and S. Nakamura Sutudy of substrate and electrode materials on ferroelectric films (1999) (9),, 70 9 (2001) (10),,, (1998) (11),,, (1991) (12) Ludmila Eckertova,,, (1994) 31
4 (BaxSr1-x)TiO3 4.1 LSI Dynamic Random Access Memory(DRAM) (1) DRAM Pb(Zr,Ti)O3(PZT)SrTiO3 (BaxSr1-x)TiO3 (BaxSr1-x)TiO3 SrTiO3 Ba Sr PZT (2) (Ba,Sr)TiO3 BaTiO3 SrTiO3 Ba/(Ba+Sr) Ba/(Ba+Sr)(BaxSr1-x)TiO3 (BaxSr1-x)TiO3 Ba/(Ba+Sr)(BaxSr1-x)TiO3 4.2(BaxSr1-x)TiO3 32
Pt(100)/MgO(100)x=1.0~0.5 (BaxSr1-x)TiO3 XRD (001) (002) MgO(200) Pt(200) BaTiO 3 4.1 BaTiO3 (003) (Ba0.9Sr0.1)TiO3 (Ba0.8Sr0.2)TiO3 ( (Ba 0.9 Sr 0.1 )TiO 3 =1.0~0.8) (001) c (Ba0.7Sr0.3)TiO3 (Ba0.6Sr0.4)TiO3 Intensity (arb. units) (Ba0.5Sr0.5)TiO3 (x=0.7~0.5) (Ba 0.8 Sr 0.2 )TiO 3 (Ba 0.7 Sr 0.3 )TiO 3 (110) (100) (220) (Ba 0.6 Sr 0.4 )TiO 3 (110) Pt (Ba 0.5 Sr 0.5 )TiO 3 (BaxSr1-x)TiO3 (001) (100) x=0.7~0.5 4.1(BaxSr1-x)TiO3 Glass (BaxSr1-x)TiO3(x=1.0~0.5)XRD 4.2 10 20 30 40 50 60 70 80 2q (deg.) XRD (BaxSr1-x)TiO3 (BaxSr1-x)TiO3 BaTiO 3 (112) (101) (001) (002) (111) ( ) XRD BaTiO3 Sr (110) Intensity (relative) (Ba 0.8 Sr 0.2 )TiO 3 (Ba 0.7 Sr 0.3 )TiO 3 4.1 Pt(100) (Ba 0.6 Sr 0.4 )TiO 3 (101) (Ba 0.9 Sr 0.1 )TiO 3 (Ba0.5Sr0.5)TiO3(x=1.0~0.5)x=1.0~0.8 (001) (Ba 0.5 Sr 0.5 )TiO 3 (200) x=0.7~0.5 10 20 30 40 50 60 2q (deg.) Sr 4.2(BaxSr1-x)TiO3/Glass (110) XRD 33
Intensity (001) BaTiO 3 (Ba 0.9 Sr 0.1 )TiO 3 (Ba 0.8 Sr 0.2 )TiO 3 (Ba 0.7 Sr 0.3 )TiO 3 (Ba 0.6 Sr 0.4 )TiO 3 (Ba 0.5 Sr 0.5 )TiO 3 Lattice Parameter (nm) 4.10 4.09 4.08 4.07 4.06 4.05 4.04 4.03 Tetragonal Cubic a axis c axis (100) 4.02 4.01 21.0 21.5 22.0 22.5 2 q (deg.) 4.00 1.0 0.9 0.8 0.7 0.6 0.5 (Ba x Sr 1-x )TiO 3 (x from 1.0 to 0.5) 4.3XRD 20 4.4 Ba Sr (BaxSr1-x)TiO3 4.1 XRD 20 4.3 (BaxSr1-x)TiO3 Sr 0.7 x0.5 (001) (100) XRD 2? a c 4.4 x0.8 a Sr x0.7 a (c/a)1 x=0.8~0.7 Sr SrTiO3 4.3(BaxSr1-x)TiO3 (BaxSr1-x)TiO3(x=1.0~0.5) 4.5 E(TO) 175180cm -1 280310 cm -1 530550 cm -1 A1(TO1) A1(TO2) A1(TO3) (3) A1(TO1)A1(TO2) 34
4.6 A1(TO2) A1(TO1) A1(TO2) TiO6 Ba Sr (4) Ti 4+ Ba 2+, Sr 2+ O 2- Intensity (arb. units) E A 1 (TO 1 ) 1 (TO 1 ) A 1 (TO 2 ) A 1 (TO 3 ) BaTiO 3 (Ba 0.9 Sr 0.1 )TiO 3 (Ba 0.8 Sr 0.2 )TiO 3 (Ba 0.7 Sr 0.3 )TiO 3 - + - + + + ;; (Ba 0.6 Sr 0.4 )TiO 3 + + + + + - + + (Ba 0.5 Sr 0.5 )TiO 3 - A1(TO1) + - + A1(TO2) 4.5(BaxSr1-x)TiO3 4.6A1(TO1)A1(TO2) 4.5 (BaxSr1-x)TiO3 Sr Sr Ti (4) (BaxSr1-x)TiO3 4.7 (BaxSr1-x)TiO3 (x=1.0~0.8) A1(TO1)A1(TO2) + + 100 200 300 400 500 600 Raman shift (cm -1 ) A1(TO1) x=1.00.8 x<0.8 (Ba0.5Sr0.5)TiO3 A1(TO1) Raman Shift (cm -1 ) 340 320 300 180 A 1 (TO 2 ) A1(TO2) x=1.0~0.7 x<0.7 1.0 0.9 0.8 0.7 0.6 0.5 2 4.7A1(TO1),A1(TO2) 160 (Ba x Sr 1-x )TiO 3 (x from 1.0 to 0.5) A 1 (TO 1 ) 35
A1(TO1) A1(TO2) 0.6 Ba/(Ba+Sr) 4.8 A1(TO2) A1(TO1) x=1.0~0.7 4.8A1(TO1)A1(TO2) x<0.7 Sr A1(TO2) Sr A1(TO2) A1(TO1)A1(TO2) 4.7 A1(TO1)A1(TO2) Ba/(Ba+Sr)x=0.5 A1(TO2) A1(TO1) A1(TO1) A1(TO2) 2 x=0.7 A 1 (TO 2 )/( A 1 (TO 1 )+A 1 (TO 2 ) ) 1.0 0.9 0.8 0.7 0.5 0.4 1.0 0.9 0.8 0.7 0.6 0.5 (Ba x Sr 1-x )TiO 3 (x from 1.0 to 0.5) 4.4(BaxSr1-x)TiO3 4.4.1 () 1 1 36
(6) 4.4.2 1 G (7) (8) 4.9 (BaxSr1-x)TiO3(x=1.0~0.5) E 1 (TO 1 ) 4.7 x=1.00.8 x<0.8 90 4.9 Raman Shift (cm -1 ) 110 105 100 95 85 80 1.0 0.9 0.8 0.7 0.6 0.5 (Ba x Sr 1-x )TiO 3 (x from 1.0 to 0.5) 37
( ) 4.9 ( ) (BaxSr1-x)TiO3 (x=1.0~0.5) Ba Sr A 4.9 Sr (BaxSr1-x)TiO3 XRD x=0.8~0.7 4.5Ba/(Ba+Sr) (BaxSr1-x)TiO3 (x=1.0~0.5) Pt(100)/MgO(100) (BaxSr1-x)TiO3 (x=1.0~0.5) 600 Au 4.10 Ba/(Ba+Sr) Sr Dielectric Constant 400 200 Ba/(Ba+Sr)=0.6 550 Ba/(Ba+Sr)4.10Ba/(Ba+Sr) (BaxSr1-x)TiO3 1.0 0.9 0.8 0.7 0.6 0.5 Sr SrTiO3 BaTiO3 (9) BaTiO3 SrTiO3 (BaxSr1-x)TiO3 Sr SrTiO3 (Ba0.6Sr0.4)TiO3 4.2 Sr SrTiO3 (Ba/(Ba+Sr)0.8) (Ba/(Ba+Sr)0.7) SrTiO3 (BaxSr1-x)TiO3 Ba/(Ba+Sr) 0 (Ba x Sr 1-x )TiO 3 (x from 1.0 to 0.5) 38
1000 4.5.1(Ba0.6Sr0.4)TiO3 (BaxSr1-x)TiO3 (x=1.0~0.5) (Ba0.6Sr0.4)TiO3 4.11 50Hz~1MHz Dielectric Constant Loss Tangent 100 0.5 0.4 0.3 0.2 0.1 0.0 100 1k 10k 100k 1M Frequency (Hz) 100 1k 10k 100k 1M Frequency (Hz) 4.11 4.5.2(Ba0.6Sr0.4)TiO3 (Ba0.6Sr0.4)TiO3 4.12 120nm 550 120nm 50nm 150 4.13 ( > ) ( ) (10)(11) 600 500 ( ) Dielectric Constant 400 300 200 100 0 100 200 300 400 500 Thickness (nm) 39 4.13(Ba0.6Sr0.4)TiO3 4.14
4.6 Ba/(Ba+Sr)(BaxSr1-x)TiO3 4.1 (BaxSr1-x)TiO3 Sr XRD (BaxSr1-x)TiO3 x=0.8~0.7 Ba/(Ba+Sr) (BaxSr1-x)TiO3 Sr SrTiO3 Ba/(Ba+Sr) (Ba0.6Sr0.4)TiO3 4.1(BaxSr1-x)TiO3(x=1.00.5)substrate : Pt(100)/MgO(100) x 1.0 0.9 0.8 0.7 0.6 0.5 (XRD) (001) (001) (001) (110) (110) (110) - -- - (110) (110) (110) c/a 1.020 1.018 1.014 1.000 1.001 1.001 55 230 320 440 550 340 40
(1) D. E. Kotecki, J. D. Baniecki, H. Shen, R.B. Laibowitz, J.J. Lian and T. M. Shaw IBM. RES. Delop. Vol. 43 No. 3 (1999) (2) R. Liedtke, S. Hoffmann, M. Grossmann and R. Waser STW, 10 19-01:044 (1999) (3) Qin-yu He, Xin-gui Tang, J.X. Zhang and Ming-mei Wu NanoStructured Materials, Vol. 11, No 2, pp. 287-293, 1999 (4) Shou-Yi Kuo, Wen-Yi Liao and Wen-Feng Hsieh Physical Review B, Vol 64, 224103 (5),,, (1997) (6) Yu. I. Yuzyuk, A. Almedia, M. R. Chaves, V. A. Alyshin, I. N. Zakharchenko and E. V. Svirdov phys. Stat. sol. 2222, 535 (2000) (7) R. Naik and J. J. Nazarko Physical Review B Vol. 61, No. 17 (2000) (8) D. A. Tenne, A. M. Clark, A. R. James, K. chen and X. X. Xi Appl. Phys. Lett. Vol. 79, No23, (2001) (9),, (10),, Vol. 17, No. 11, pp. 660~665, (1996) (11) T. Horikawa, N. Mikami, H. Ito, Y. Ohno, T. Makita and L. Sato, IEICE Trans. Elwctron. E77-C p. 385 (1994) 41
5 Ti/(Ba+Sr) 5.1 (Ba,Sr)TiO 3 BaOSrO TiO 2 11 Ba/(Ba+Sr), Ti/(Ba+Sr)=1 (Ti/(Ba+Sr)1) 5.2Ti/(Ba+Sr) Ba Sr Ti (Ti/(Ba+Sr)<1)30 XRD Ti/(Ba+Sr)<1.0 5.1 Ti Intensity BST(101) BaO(200) (Ba 0.8 Sr 0.2) TiO 3 BaO BaO, SrO TiO 2 BaO TiO 2 (Ba 0.8 Sr 0.2) TiO 3 BaO 5.2 Ti (Ti/(Ba+Sr)>1)70 30.5 31.0 31.5 32.0 32.5 2q (deg.) 5.1Ti XRD Ti/(Ba+Sr)>1.0 XRD 5.1 Ti (Ba 0.8 Sr 0.2) TiO 3 TiO 2 Intensity BST(003) TiO 2 (112) Ti BaO SrO TiO 2 68.0 68.8 69.6 70.4 71.2 72.0 2q (deg.) 5.2Ti XRD 42
TiO 2 (Ba 0.8 Sr 0.2) TiO 3 TiO 2 Ba,Sr Ti (Ba,Sr)TiO 3 Ti/(Ba+Sr)0.87~1.72 XRD 5.3 0.40 Ti/(Ba+Sr)=1.0 Ba,Sr Ti Ti FWHM (deg.) 0.35 0.30 0.25 0.20 0.15 0.8 1.0 1.2 1.4 1.6 1.8 Ti/(Ba+Sr) 5.3 Ti/(Ba+Sr) FWHM 5.3Ti/(Ba+Sr) Ti/(Ba+Sr) AFM 5.4 Ti/(Ba+Sr)=1.0 RMS Ti Ti/(Ba+Sr)<1.0 Ti/(Ba+Sr)=1.0 Ti Ti/(Ba+Sr)>1.0 Ti/(Ba+Sr)=1.15 RMS Ti Ti/(Ba+Sr)1.4 RMS 43
2 µm 2 µm 2 µm Ti/(Ba+Sr)= 0.87 Ti/(Ba+Sr)=0.87 Ti/(Ba+Sr)= 1.15 Ti/(B+Sr)=1.0 0 0 0 RMS : 12 µm 2 µm 0 0 2 µm 0 2 µm RMS : 5 µm Ti/(B+Sr)=1.72 Ti/(B+Sr)=1.51 0 0 0 RMS : 5 µm 2 µm 2 µm 2 µm 2 µm Ti/(B+Sr)=1.4 0 RMS : 10 µm 0 RMS : 5 µm 0 2 µm RMS : 5 µm 2 µm 図 5.4 Ti/(Ba+Sr)の組成ずれに対する AFM 像 5.4 Ti/(Ba+Sr)比の組成ずれによる誘電率の変化 Ti/(Ba+Sr)比の組成ずれに対する誘 500 450 電率の変化を図 5.5 に示す それぞれ の膜厚は 200nm とした この図から Ti が不足している膜では誘電率が約 360 で あ り 化 学 量 論 組 成 で あ る Dielectric constant 400 350 300 250 200 150 Ti/(Ba+Sr)=1.0(e=320)よりわずかに大 100 50 0.8 きくなっていることがわかる 一方 1.0 1.2 1.4 1.6 1.8 Ti/(Ba+Sr) Ti リ ッ チ な 膜 に お い て は 図 5.5 Ti/(Ba+Sr)の組成ずれに対する誘電率 Ti/(Ba+Sr)=1.15 の時 誘電率が 420 で 極大を示し それ以降は誘電率が低下し一定となることがわかった Ti/(Ba+Sr)=0.87 1.15 の膜において それぞれ(Ba 0.8Sr0.2) TiO 3 と BaO 及び(Ba0.8Sr0.2) TiO 3 と TiO 2 とが混在し結晶性 44
(1) 5.4 AFM Ti/(Ba+Sr)=1.0 Ti/(Ba+Sr)=0.871.15 Ti/(Ba+Sr)=1.0 Ti/(Ba+Sr)=0.871.15 BaO TiO 2 (Ba 0.8 Sr 0.2) TiO 3 TiO 2 Ti/(Ba+Sr)=1.15 Ti/(Ba+Sr)=0.87 Ti/(Ba+Sr)1.34 5.5 Ti/(Ba+Sr) Ti/(Ba+Sr) 4.6 Ti/(Ba+Sr)=1.0 0.10 0.09 0.08 0.07 0.025 Ti (Ti/(Ba+Sr)>1.0)Ba,Sr Ti 5.6Ti/(Ba+Sr) XRD FWHM Ti Ti Ti Loss Tangent 0.06 0.05 0.04 0.03 0.02 0.01 0.00 0.8 1.0 1.2 1.4 1.6 1.8 Ti/(Ba+Sr) 45
4.6 Ti/(Ba+Sr) Ti/(Ba+Sr) (Ba 0.8 Sr 0.2) TiO 3 BaO Ti (Ba 0.8 Sr 0.2) TiO 3 TiO 2 Ti/(Ba+Sr) (1),, 46
6 (Ba x Sr 1-x )TiO 3 6.1 (Ba x Sr 1-x )TiO 3 Ba Sr DRAM(Dynamic Random Access Memory) (1)(2) BaTiO 3 1000 (3) A Ba Sr Pt (Ba x Sr 1-x )TiO 3 (Ba x Sr 1-x )TiO 3 6.2(Ba x Sr 1-x )TiO 3 BaTiO 3 Ba Sr c a c ( )1.0 6.1 (Ba x Sr 1-x )TiO 3 x (4) (Ba x Sr 1-x )TiO 3 A Ba Sr Ba/(Ba+Sr)x 47
ac Pt (Ba x Sr 1-x )TiO 3 c ( ) 5.1 5.3 (Ba x Sr 1-x )TiO 3 Ba x=1.0~0.8 c/a1.0 Ref : B. A. Baumert, D. D. J. J. Taylor, T. T. Otsuki Otsuki and and K. suu K. Suu, J. Appl. J.Appl. Phys. Phys. 82 (1997) 82, 1997 6.1(Ba x Sr 1-x )TiO 3 (001) (Ba x Sr 1-x )TiO 3 x=1.0~0.8 x 6.2.1 (Ba x Sr 1-x )TiO 3 6.2 (Ba x Sr 1-x )TiO 3 (x=1.00.8) 60nm~600nm c a Lattice Constant a (nm) 0.406 0.404 0.402 0.400 BaTiO 3 (Ba 0.9 Sr 0.1 )TiO 3 (Ba 0.8 Sr 0.2 )TiO 3 Lattice Constant c (nm) 0.410 0.409 0.408 0.407 BaTiO 3 (Ba 0.9 Sr 0.1 )TiO 3 (Ba 0.8 Sr 0.2 )TiO 3 0.398 0 100 200 300 400 500 600 Thickness (nm) 0 100 200 300 400 500 600 Thickness (nm) 6.2 a c 48
a c Pt(Ba x Sr 1-x )TiO 3 (x=1.0~0.8) (Ba x Sr 1-x )TiO 3 (x=1.0~0.8) a c 6.1 Pt (Ba x Sr 1-x )TiO 3 1.82% BaTiO 3 c 50300nm 300nm c 1.60%1.38% (Ba 0.9 Sr 0.1 )TiO 3 (Ba 0.8 Sr 0.2 )TiO 3 c 400nm c 6.1 x 1.0 0.9 0.8 (%) 1.82 1.6 1.38 2µm BaTiO 3 60 nm 130 nm 230 nm 320 nm 450 nm 0µm 0µm 2µm 2µm (Ba 0.9 Sr 0.1 )TiO 3 60 nm 130 nm 230 nm 320 nm 450 nm 0µm 0µm 2µm 2µm (Ba 0.8 Sr 0.2 )TiO 3 60 nm 130 nm 230 nm 320 nm 450 nm 0µm 0µm 2µm 6.3 AFM 49
6.3 AFM x=0.90.8 BaTiO 3 230nm BaTiO 3 Pt (Ba x Sr 1-x )TiO 3 (x=0.9 0.8) Pt 6.2.2 (Ba x Sr 1-x )TiO 3 (x=1.0~0.8)a c (Ba x Sr 1-x )TiO 3 (x=1.0~0.8) (5) 6.4 A 1 (TO 2 ) (Ba x Sr 1-x )TiO 3 (x=1.0~0.8) A 1 (TO 2 ) (Ba x Sr 1-x )TiO 3 (x=1.0~0.8) 300 BaTiO 3 (Ba 0.9 Sr 0.1 )TiO 3 300nm Raman Shift (cm -1 ) 320 315 310 305 0 100 200 300 400 500 Thickness (nm) A 1 (TO 2 ) BaTiO 3 (Ba 0.9 Sr 0.1 )TiO 3 (Ba 0.8 Sr 0.2 )TiO 3 6.4 50
6.2.3 1 1 1 ( ) ( ) (6) 6.6 (Ba x Sr 1-x )TiO 3 (x=1.00.8) 450 nm 450 nm 450 nm T c = 147 o C T c = 140 o C 320 nm 320 nm 320 nm Dielectric Constant 230 nm 130 nm T c = 75 o C Dielectric Constant 230 nm 130 nm T c = 195 o C T c = 156 o C Dielectric Constant 230 nm 130 nm T c = 174 o C T c = 184 o C T c = 128 o C T c = 200 o C T c = 200 o C 60 nm 60 nm 60 nm T c = 140 o C 50 100 150 200 Temperature ( o C) T c = 207 o C 50 100 150 200 Temperature ( o C) 20 40 60 80 100 120 140 160 180 200 220 Temperature ( o C) T c = 204 o C 6.6 51
(Ba x Sr 1-x )TiO 3 (x=1.00.8) Curie-Weiss C + ( T T ( T c ) e (T-T c ) 6.7 (Ba x Sr 1-x )TiO 3 (x=0.8, 0.9) 130 (Ba 0.9 Sr 0.1 )TiO 3 (Ba 0.8 Sr 0.2 )TiO 3 110139( 60nm) ( )( (6) Pt (Ba x Sr 1-x )TiO 3 c (Ba x Sr 1-x )TiO 3 (x=1.0) BaTiO 3 230nm CCurie T c ε = ε 0 T c 52 ) Temperature ( o C) Temperature ( o C) Temperature ( o C) 150 140 120 110 100 90 80 70 210 180 150 120 (Ba 0.9 Sr 0.1 )TiO 3 (Ba 0.9 Sr 0.1 )TiO 3 bulk 90 0 100 200 300 400 500 210 180 150 120 90 0 100 200 Thickness (nm) Thickness (nm) (Ba 0.8 Sr 0.2 )TiO 3 (Ba 0.8 Sr 0.2 )TiO 3 bulk 60 0 100 200 300 400 500 Thickness (nm) BaTiO 3 BaTiO 3 bulk 6.7
320nm 6.2 a c 6.4 (Ba x Sr 1-x )TiO 3 (x=1.0)320nm Pt 6.2.4 BaTiO 3 (7) Devonshire BaTiO 3 (8) G P (9)(10) G 1 2 1 4 1 6 2 4 = χp + ς 11P + ξ111 P 6 2Q 12 HP 2 1 1 P E P = ε ( ε r 1)E 0 e 0 e r E (P=0) G? 1 ε ( 0 ε r 1)? 53
P 2 P 4 P 6 ( ) P P -P? T χ = ( T T0) Cε 0 Curie-Weiss T Curie-Weiss T 0? ( ) ( ) G P P s BaTiO 3 P (1) H = X 1 = X 2 (X1X2 xy ) H Q ij P j x i 1 P 2 (10) P s (Ba x Sr 1-x )TiO 3 (x=1.0~0.8) (9)(12)(13)(14) 2 Q ij = P j 6.8 54
(P s 0) (Ba x Sr 1-x )TiO 3 (x=1.0~0.8) 1 (15) BaTiO 3 (Ba 0.9 Sr 0.1 )TiO 3 (Ba 0.8 Sr 0.2 )TiO 3 0.30 T c : Curie Temperature 0.30 T c : Curie Temperature 0.30 T c : Curie Temperature Polarization (C/m 2 ) 0.25 0.20 0.15 0.10 Ferroelectric Phase -1.0 GPa -0.5 GPa -1.5 GPa -2.0 GPa Polarization (C/m 2 ) 0.25 0.20 0.15 0.10 Ferroelectric Phase -1.0 GPa -0.5 GPa -1.5 GPa -2.0 GPa Polarization (C/m 2 ) 0.25 0.20 0.15 0.10 Ferroelectric Phase -2.0 GPa -1.5 GPa -1.0 GPa -0.5 GPa 0.05 Pararroelectric Phase 0.05 Pararroelectric Phase 0.05 Pararroelectric Phase T c T c T c T c 0.00 0 100 200 300 Temperature ( o C) T c T c T c T c 0.00 0 100 200 300 Temperature ( o C) T c T c T c T c 0.00 0 100 200 300 Temperature ( o C) 6.8 P s 6.9 120(BaTiO 3 ) 97 ((Ba 0.9 Sr 0.1 )TiO 3 )65((Ba 0.8 Sr 0.2 )TiO 3 ) 4050/0.5GPa 50 100 150 200 250 300 350 (Ba x Sr 1-x )TiO 3 (x=1.00.8) (1) 6.10 (Ba x Sr 1-x )TiO 3 (x=1.0~0.8) 60nm Compression Stress (GPa) 0.0 BaTiO 3 (Ba 0.9 Sr 0.1 )TiO 3 (Ba 0.8 Sr 0.2 )TiO 3-0.5-1.0-1.5-2.0 Curie Temperature ( o C) 6.9 55
BaTiO 3 240nm 0.0 a 240nm Pt 6.2 6.10(Ba x Sr 1-x )TiO 3 A Sr (Ba x Sr 1-x )TiO 3 Tensile Stress Stress (GPa) Compression Stress Pt (Ba x Sr 1-x )TiO 3 c (Ba x Sr 1-x )TiO 3 0.9 0.6 0.3-0.3-0.6-0.9-1.2-1.5 0 100 200 300 400 500 Thickness (nm) BaTiO 3 (Ba 0.9 Sr 0.1 )TiO 3 (Ba 0.8 Sr 0.2 )TiO 3 6.2.5(Ba x Sr 1-x )TiO 3 (x=1.00.8) (Ba x Sr 1-x )TiO 3 (x=1.00.8)/pt(100)/mgo(100) Au Sawyer-Tower 6.11 (x=1.0 0.8) BaTiO 3 (Ba x Sr 1-x )TiO 3 (x=0.9, 0.8) 6.10 BaTiO 3 0.1GPa c (Ba x Sr 1-x )TiO 3 (x=0.9, 0.8) 1.1GPa1.5GPa BaTiO 3 (Ba 0.8 Sr 0.2 )TiO 3 c 56
c (Ba x Sr 1-x )TiO 3 (x=0.9, 0.8) 60nm (Ba x Sr 1-x )TiO 3 20 15 60 nm BaTiO 3 (Ba 0.9 Sr 0.1 )TiO 3 (Ba 0.8 Sr 0.2 )TiO 3 0.2 60 nm 40 60 nm 10 0.1 20 5 P (m C/cm 2 ) 0-5 P ( mc/cm 2 ) 0.0 P (m C/cm 2 ) 0-20 -10-0.1-15 -40-20 -4000-2000 0 2000 4000 E (kv/cm) -0.2-2000 -1500-1000 -500 0 500 1000 1500 2000 E (kv/cm) -60-2000 -1500-1000 -500 0 500 1000 1500 2000 E (kv/cm) 30 8 20 130 nm 6 130 nm 40 130 nm 4 10 2 20 P (m C/cm 2 ) 0-10 P (m C/cm 2 ) 0-2 P (m C/cm 2 ) 0-4 -20-20 -6-30 -4000-2000 0 2000 4000 E (kv/cm) -8-800 -600-400 -200 0 200 400 600 800 E (kv/cm) -40-4000 -3000-2000 -1000 0 1000 2000 3000 4000 E (kv/cm) 8 60 40 230 nm 6 4 130 nm 40 30 20 230 nm 20 2 10 P (m C/cm 2 ) 0-20 P (m C/cm 2 ) 0-2 P (m C/cm 2 ) 0-10 -40-4 -6-20 -30-60 -150-100 -50 0 50 100 150-8 -800-600 -400-200 0 200 400 600 800-40 -1000-500 0 500 1000 E (kv/cm) E (kv/cm) E (kv/cm) 8 6 320nm 40 450 nm 30 320 nm 20 4 20 10 P (m C/cm 2 ) 2 0-2 P (m C/cm 2 ) 0-20 P (m C/cm 2 ) 0-10 -4-20 -6-40 -30-400 -200 0 200 400 E (kv/cm) -800-600 -400-200 0 200 400 600 800 E (kv/cm) -1500-1000 -500 0 500 1000 1500 E (kv/cm) 6.11 P-E 57
6.3 A Ba Sr Pt(Ba x Sr 1-x )TiO 3 (Ba x Sr 1-x )TiO 3 (Ba x Sr 1-x )TiO 3 P-E (Ba x Sr 1-x )TiO 3 (x=1.00.8) 58
(1) E. Fujii, et al IDEM Tech. Dig. 267. (1992) (2) Y. Ohno, et al Symp. on VLSI Tech., Dig. Of Tech. Papers 149. (1994) (3), (Ba,Sr)TiO3 DRAM (4) B. A. Baumert, D. J. Taylor, T. Otsuki and K. suu J. Appl. Phys. 82 (1997) (5),,, (1988) (6),, (1997) (7) Uma D. Venkateswaran, Vaman M. Naik and Ratna Naik Physical Review B Vol. 58 No. 21 (1998) (8) A. F. Devonshire Philos. Mag. 40, 1040 (1949) (9) K. Abe, N. Yanase, S. Komatsu, K. Sano and T. Kawakubo 67 11 (1998) (10) T. Shimizu, T. Kawakubo 70 1 (2001) (11),,, (2002) (12) N. A. Pertsev, A. G. Zembilgotov, S. Hoffmann, R. Waser and A. K. Tagantsev J. Appl. Phys. Vol. 85 No. 3 (1999) (13) Sylvie. Bernhardt, Lauren Mize, Philippe Delaye and Gerald Roosen J. Appl. Phys. Vol. 92, No. 10, (2002) (14) Na Sai, Karin M, Rabe and David Vanderbilt Physical Review B 66, 104108 (2002) (15),, (2001) 59
7 (Ba x Sr 1-x )TiO 3 (x=1.0~0.5) (Ba x Sr 1-x )TiO 3 (x=1.0~0.5) (Ba x Sr 1-x )TiO 3 BaTiO 3 SrTiO 3 Pt(100)/MgO(100)SrTiO 3 (Ba x Sr 1-x )TiO 3 SrTiO 3 SrTiO 3 (Ba x Sr 1-x )TiO 3 (x=1.0~0.5) (Ba x Sr 1-x )TiO 3 (x=1.0~0.5) (Ba x Sr 1-x )TiO 3 (x=1.0~0.5)x=0.7 (001) (100) x=0.8~0.7 (Ba 0.6 Sr 0.4 )TiO 3 SrTiO 3 (Ba x Sr 1-x )TiO 3 BaO TiO 2 Ba x Sr 1-x )TiO 3 60
(Ba x Sr 1-x )TiO 3 A Ba Sr Pt (Ba x Sr 1-x )TiO 3 (Ba x Sr 1-x )TiO 3 Pt (Ba x Sr 1-x )TiO 3 (Ba x Sr 1-x )TiO 3 (x=1.00.8) (Ba x Sr 1-x )TiO 3 (Ba x Sr 1-x )TiO 3 (Ba x Sr 1-x )TiO 3 61
1. *,,,,, Pt BaTiO 3 48 29P-n-10 2. *,,, (Ba x Sr 1-x )TiO 3 5-62
63 2