16 2 17
...1 1.1.1 1.2.3...4 2.1. 4 2.2. 4 2.3. 5 2.3.1.. 5 2.3.2. 10 2.3.3.. 11 2.4.....11 2.4.1 LCD.....12 2.4.2 EL.. 13 2.4.3. 14 2.4.4. 15 2.4.5 SAW... 15 2.4.6.. 16 2.5.....16 2.5.1 CVD.....16 2.5.2.. 17 2.5.3.. 18 2.5.4... 20 2.5.4.1 dc......22 2.5.4.2 rf... 22 2.5.4.3... 24 25 3.1.. 25 3.2 Hall.25 3.3 Hall.25 3.4 van der Pauw....27 3.5 van der Pauw....28 i
...30 4.1. 30 4.2. 30 4.2.1.. 30 4.2.2.. 32 4.3... 32 4.3.1...32 4.3.2... 33 4.3.2.1.... 33 4.3.2.2 33 4.4.... 36.37 5.1...37 5.2... 37 5.2.1...37 5.2.1.1....38 5.2.1.2.... 39 5.2.1.3.... 40 5.3.3...41 5.3.4.....43 5.3.4.1.. 43 5.3.4.2.. 44 5.4.. 47 5.4.1 1m 47 5.4.2 10cm...49 5.4.2.1......49 5.4.1.1.. 50 5.4.3......50....51 6.1..51 6.2.. 52 ii
..53.. 53.. 55 iii
1 1.1 Liquid Crystal Display: LCD Plasma Display Panel: PDP ELElectro Luminescence LCD Thin Film Transistor: TFT PHS Personal Handy-phone System 5 ~ 6 2000 5.1 2010 11.9 2010 LCD 2.7 4.4 PDP 0.1 0.4 EL 4.1 ( 1.1) 1.1 : 2010, 2001, 1 1 : EL 2 : EL 7.1 ~ 9.9 2010 EL 3 : PDP FED 0.9 ~ 2.7 2010 EL p15 1
110-3 cm 380 ~ 780 nm 80% 3.2 ev 350 ~ 400 nm 1.2 Au, Ag, Pt, Cu, Rh, Pd, Al, Cr In O 2 3, SnO 2, ZnO, CdO, TiO2, Cd In O 2 4, Cd SnO 2, Zn SnO 2 2 4, In O ZnO 2 3 MgInO 4, CaGaO4 TiN, ZrN, HfN LaB 6 1.2 : 166 p80 AuAgPtCuRhPdAlCr 3 ~ 15 nm 18 19 3 10 ~ 10 cm 10 18 cm 3 1 10 3 ~ 10 cm n In 2 O 3 SnO 2 ZnOCdOCdIn 2 O 4 Cd 2 SnO 4 Zn 2 SnO 4 In 2 O 3 -ZnO In2O3 SnSnO2 SbFZnO InGaAl 20 10 21 3 ~ 10 cm 10 3 ~ 10 4 cm 2
Al ZnO Zn Al 3+ 1 1 Sn In O 2 3ITO: Indium Tin OxideITO nm 90% 2 10 4 cm + ITO H In 1996 1kg Zn 163 In 40,000 Flat Panel Display: FPD ITO 2+ 1.2 ITO Zn 3
2 2.1 ZnO AlGa ZnOAZO, GZO 2.2 2.3 2.4 2.5 2.2 ZnO P63mc 2.1 Zn O O 3/8 4 1 0.1992 nm 2+ 2 4 Zn 0.072 nm 4 O 0.124 nm 0.3208 nm Zn-O 4 O Zn 4s-O 2p a = 0.3249 nmc = 0.5207 nm c c Zn (0001) O (0001) ZnO Zn 10% 4
2.1: ZnO 2.3 2.3.1 v E v = µe (2.1) eτ µ = τ, m* m * 1 q ρ 1 qnµ = (2.2) n n ZnO n ZnO 1 ZnO [Zn ] + e + O2 2 i (2.3) 5
1 ZnO [Vo ] + e + O 2 (2.4) 2 i ] i ] [Zn ] 1 Zn [Vo 1 O e [Zn ] [Vo 2 1 1 ZnO 2.2 0.2 ev Zn O Zn n Zn O 20 5 10 cm 3 2.2 : ZnO 166 p137 6
rfradio frequency2.5 4.5 10 cm ZnO ZnO [Zn i '] [Vo'] Al [Al'] [Zn i '] [Vo'] Al 20 8 10 cm 3 Al Zn m* k m* n ZnO m* = 0. 3me 5 BHD Brooks-Herring-Dingle theory I 4 µ Fermi-Dirac 24π ( ε ε ) h n 3 2 3 0 r µ I = 2.5 3 2 2 e m * ( x) Z n I ε 0 ε r Z n I (x) 4 1 ( x) = In 1 + 2.6 x x 1+ 4 x 7
2 e m * x = 2.7 2 5 πε ε h 3π n 0 r 1/3 N r N µ N 3 µ = m * e N 3 20ε ε h n 2.8 0 µ µ ac 2 1 2 1 4 3 eh ρu 2 π = 2.9 5 3 3E m * ( kt) ρ E k u1 1 n µ disl µ disl 2 2 3 30ε d 2π ( kt ) = 2.10 3 2 N e f m disl λ d ε d f N λ disl εkt λ d = 2.11 2 e n 2.92.10 d 8
VolgerPetritz KazmerskiOrton PowellSeto Q t = Nl 2 2.12 N l Qt 2 Q t < NL L n N E B E B 2 2 q Qt = 2.13 8εN 2 Lq EB µ g th = exp - 2.14 2πm * kt kt l EB 2 µ g tun 2 Lq 2m * E = B 4πl m E 2 2 * B µ g tun exp 2.15 2 h l n 2 h µ g tun µ 1 1 1 µ = + + L + 2.16 µ µ 1 2 µ n ZnO n > 5 10 18 cm -3 9
2.3.2 ZnO 3.3 ev 380 ~ 780 nm 2.3.1 2.3 Burstein-Moss Burstein-Moss 2.3 : Burnstain-Moss 166 p74 10 20 10 21 cm 3 10
2.3.3 ZnO 2.1 H vap kj.mol C p (J/(degmol)) S p (J/deg) H t (kj/mol) (kj/mol) G t MJ/mol 3 kg/ m kg/1 kg H 2 O J/(smdeg) 1975 540 ZnO 40.3 43.65-348.4-318.4 4.03 5.7 5.67X -6 3 ~ 4 10 / 25-18 3 10 4 ~ 5 25.2 / 93 2.1 : ZnO 2002 p24 2.4 ZnO ZnO ZnO 3.2 ~ 3.3 ev 11
ZnO 2.4.1 LCD LCD: liquid crystal display 2 2 2 2 2.4(b) RGB TFT 5 LCD LCD 1 57 2004/01/13 LCD ITO 2.5 LCD 30 nm 300/ 85 ~ 90% 12
2.4 : 166 p20 2.4.2 EL Electro Luminescence (EL) EL EL dc 1.5 lm/w 1000 cd/ EL 1987 EL 2.5 EL x, y EL 10µm 100 ~ 300 nm EL 0.1 ~ 0.2 µm 10 / 13
2.5 : EL 166 p27 2.4.3 TV TFT TFT 2004/01/1380 Plasma Display PannelPDP 2 20 ~ 30 mm 2.6- x, y ITO Cr-Cu-Cr MgO x, y Ne 14
2.6 : PDP 166 p24 2.4.4 pn n p n p 1991 Ru TiO 2 ZnO Ru Ru Si H ZnO + H 15
2.4.5 SAW ZnO surface acoustic wave: SAW CdS Cd ZnO ZnO c 2.5 CVD LiNbO3 LiTaO3 SAW ZnO ZnO 2.4.6 resistorvariable - M ZnO ZnO 0.5 mol Bi O Cr O Sb O 2 3 2 3 2 3 CoO MnO 1100 50 ns 2.5 16
ZnO 1975 CVD 2.7 2.5.1 CVD Chemical vapor deposition: CVD ZnO Zn(C H H OH ZnO Zn(C 2 5 ) 2 2 H 5 ) 2 Zn(C 2 H 5 ) 2 C 2 5 17
2.7 : 2002 p33 2.5.2 1.3 10 4 Pa 1000 ~ 4000 K 2.5.4 18
2.5.3 2.8 2.8 : p81 2.9 ZnO Ga O 2 2 19
2.9 : 166 p212 1 ~ 10 Pa ev ev Ar ev ev 2 20
X 2.5.4 Ar + Ar + 2.10 2.10 : p69 21
1 2.2 / 0.1 ~ 10-3 10 ~ -4 10-2 10 ~ -4 10 ~ 0.1 ~ 1 2.2 : 2002 p36-6 10-3 10 2 ~ 3 2.7 dcrf 2.5.4.1 dc 2.11 dc 22
1 Pa V Ar + dc rf 2.11 : dc 2002 p38 2.5.4.2 rf 2.12 rf 2.11 dc dc rf rf 23
dc dc dc 13.56MHz rf dc dc 2.12 : rf 2002 p39 2.5.4.3 24
dc 0 2.13 2.13 : 2002 p42 25
3 3.1 Hall Hall HL5500PC: ACCENTHall van der Pauw 3.2 Hall 1879 E. H. Hall Hall Hall effect Hall 3.3 Hall 3.1 : n Hall p238 I x n B v z x 26
qv B x z y G H G H y Hall E y Hall + y qe y Lorentz s force 0 qe ( qv B ) = 0 (3.1) y x I x b t p I = qnv bt (3.2) G H 3.2 R H V x x z V H 3.1 I xbz = E yb RH (3.3) t H = R H 1 = (3.4) ( q n) Hall coefficient R I [A] B [T]b [m]t [m]q [C]p [m-3] H V [V] R [m3/c] H H R H x z V H = 1 ( q p) (3.5) 3.4 3.43.5 R H 2 p 2 n 1 pµ nµ = (3.6) q ( nµ + pµ ) 2 n p R H p 27
3.4~3.6 γ R H Si Ge γ = 3π 8 γ = 315π 512σ n σ n = qµ n n 3.4 γ R H σ n = µ qn ( qµ nn) = γµ n Hn = (3.7) µ Hall mobility H n µ H p ( qµ p p) = γµ p H p γ R Hσ p = µ qn = (3.8) 3.4 van der Pauw van der Pauw L. J. van der Pauw 1958 van der Pauw Hall n p van der Pauw Hall Hall van der Pauw Hall 3.2ab 28
1 cm 4 (b) 3.2 : van der Pauw A, B, C, D p223 Hall 3.5 van der Pauw 3.2 AB I CD V AB CD R AB, CD VCD R AB, CD = (3.9) I AB BC I DA V BC DA R BC, DA 29
AC I AC BD VDA R BC, DA = (3.10) I BC B V BD V BD R AC, BD = (3.11) I AC ρ n µ ( R + R ) πd AB, CD BC, DA RAB, CD ρ = f (3.12) In2 2 RBC, DA µ B n = e d (3.13) R AC, BD µ d R AC. BD = (3.14) B ρ e d f R AB, CD R BC, DA R R f exp = arccosh In2 ( In2/ ) AB, CD BC, DA f AB, CD+ RBC, DA 2 R (3.15) R AB CD RBC, DA, > f () R, CD / RBC, DA ( R) AB = R f van deru Pauw (3.3) 30
3.3 : van der Pauw f 2002 p59 4 4.1 O 2 RPDReactive Plasma Deposition 4.2 4.2.1 2.5.3 4.1 (250 A) 31
4.1 : 4.2 4.3 : 4.2 : 32
7 (1996) p106 4.3 33
4.2.2 RPD 1 4.4 ZnO Ga O 2 2 O 2 200 4.4 : RPD 4.3 4.3.1 ZnO 4.14.1 4.14.2 34
2.0 10 4 cm RPDMOCVDPLDrfMS PLD 1cm RPDMOCVDrfMS 4.3.2 4.3.2.1 Corning # 7059 0.7 mm 4.2 200 200 4.3.2.2 4.1.1 PLD RPD 200MOCVD 400 225rfMS 90MOCVD 400 2 MOCVD rfms 35
4.1 : ZnO 1, 1m 2, 10 cm 15 ccm dcms : DC rfms : rf rfmrs : rf RPD : 166 p139 36
4.5 : 166 p139 4.6 : 166 p139 37
RPD 200 rfms rfms *, ** 4.2 : p81 4.4 RPD rfms 38
5 5.1 5.2 5.1 : 1m Hall 5.2.1 3 Hall 1cm 5.1 39
Hall ± 300 mm 5.2.1.1 5.1RPD Ga 5.1 : 40
5.2.1.2 n 5.2 : 41
5.2.1.3 5.3 ±10 5.2.1.1 5.1 O 2 5.3 : 42
5.3.3 RPD ρ ρ av : 100 ρ n nav : 100 n av av µ µ av : 100 µ av (5.1) (5.2) (5.3) 5.4 ~ 5.6 ± 6 ± 6 % ± 10 % 5.5 ± 8 % RPD ± 10 ~ ±15 % RPD 5.4 : 43
5.5 : 5.6 : 44
5.3.4 Atomic Force Microscope: AFM JSPM-4210JEOL 5.7 ~ 5.11 AFM 5.3.4.1 5.2 d ~ g (nm) (nm) d 40 ~ 100 55 ~ 70 e 20 ~ 60 30 ~ 40 g 30 ~ 60 40 ~ 50 k 20 ~ 55 20 ~ 30 s 40 ~ 90 60 ~ 70 5.2 : AFM e 45
5.3.4.2 5.7 ~ 5.11 4.2.2 Ga 46
5.7 : 5.8 : e 47
5.9 : g 5.10 : k 48
5.11 : s 5.4 5.4.1 1m 5.35.12 5.13 10 sccm 10 sccm 10 sccm 10 sccm 10 sccm 5.3 : Hall 49
5.12 : 5.13 : 50
5.4.2 10cm 10 cm RPD Hall (5.4 5.4 : 10 cm 5.4.2.1 5.4 5.14 1m 5.14 : 51
5.4.2.2 5.4 5.15 sccm 5 sccm 5 sccm 10 sccm 10 sccm 20 sccm 5.15 : 5.4 Hall 52
6 6.1 Hall Hall Hall van der Pauw 1 m RPD rfmsrf 1 m 53
6.2 Ga 54
ZnO PIXE 20 PIXE 1. 166 2. [] 3. 4. 5. EL 6. 1 2002/2/21 7. 7 (1996) 104-108 8. Pauw 32, 11 (1963) 863-868 9. 42 7 (1973) 10. 2002 11. 12. 13. L.J. van der PauwPhilips Tech. Rev. 20 (1958/59) 220 14. 74 (2000) 327-333 15. Vol.50, No.9, (1999) 782-785 16. T. Yamamoto and H. Katayama-Yoshida" Solution Using a Codoping Method to Unipolarity for the Fabrication of p-type ZnO", Jpn. J. Appl. Phys. 38 (1999) L166-L169. 17. T. Yamamoto and H. Katayama-Yoshida, "Unipolarity of ZnO with a wide-band gap and its solution using codoping method", Journal of Crystal Growth 214/215 (2000) 552-555. 18. T. Yamamoto and Hiroshi Katayama-Yoshida, "Control of Valence States in ZnO by Co-doping Method", Mater. Res. Soc. Proc. 623 (2000) 223-234. 19. T. Yamamoto and H. Katayama-Yoshida, "Physics and Control of Valence States in ZnO by Codoping Method", Physica B, 302/303 (2001) 155-162. 55
20. T. Yamamoto and H. Katayama-Yoshida,"Materials design for the fabrication of p-type ZnO by codoping method":proc. 25th Int. Conf. on the Physics of Semiconductors (ICPS25), Osaka, 2000(Springer, Berlin, 2001)p.1409-1410. 21. T. Yamamoto, "Control of Valence States for ZnO and ZnS With a Wide-Band Gap by a Co-Doping Method", Mat. Res. Soc. Symp. Proc. 719 (2002) 463-468 (Symposium F:Defect and Impurity Engineered Semiconductors and Devices III. Editors: S. Ashok, J. Chevallier, N.M. Johnson, B.L. Sopori,H. Okushi). 22. T. Yamamoto, "Codoping for the fabrication of p-type ZnO", Thin Solid Films, 420-421 (2002) 100-106. 23. T. Yamamoto, "Codoping Method for Solutions to Doping Problems in Wide-Band-Gap Semiconductors", physica status solidi (a) 193, No.3 (2002) 423-433. 24. S. Shirakata, T. Sakemi, K. Awai and T. Yamamoto, "Optical and electrical properties of ZnO films prepared by URT-IP Method", Thin Solid Films, 445 (2003) 278-283. 25. T. Yamamoto,"Control of N-Impurity States in N-Doped ZnO, ZnS and ZnTe", Jpn. J. Appl. Phys. Vol. 42 (2003) pp. L514-L516. 26. K. Iwata, T. Sakemi, A. Yamada, P. Fons, K. Awai, T. Yamamoto, M. Matsubara, H. Tampo and S. Niki,"Growth and electrical properties of ZnO thin films deposited by novel ion plating method", Thin Solid Films, 445 (2003) 274-277. 27. T. Sakemi, S. Shirakata, K. Iwata, K. Matsubara, H. Tampo, P. Fons, S. Niki, K. Awai, T. Yamamoto, High-Quality Transparent Conducting Oxide Films Deposited by a Novel Ion Plating Technique, MRS Proceedings Volume 763, B7.4, Editors: Rommel Noufi, William N. Shafarman, David Cahen, Lars Stolt. 28. S. Shirakata, T. Sakemi, K. Awai and T. Yamamoto, "Optical and electrical properties of URT-IP ZnO thin films for photovoltaic devices", to be published in Thin Solid Films. 29. T. Yamamoto, T. Sakemi, K. Awai and S. Shirakata, "Dependence of carrier concentrations on oxygen pressure for Ga-doped ZnO prepared by ion plating method", to be published in Thin Solid Films. 56
AFM 13 57