離散最適化基礎論 第 11回 組合せ最適化と半正定値計画法

Similar documents
p1_5.pmd

31 33

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i =

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

数学Ⅱ演習(足助・09夏)

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

目次

?

untitled

第55期ご報告


D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

31 4 MATLAB A, B R 3 3 A = , B = mat_a, mat_b >> mat_a = [-1, -2, -3; -4, -5, -6; -7, -8, -9] mat_a =


(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

ドキュメント1


資料5:聖ウルスラ学院英智小・中学校 提出資料(1)

‘¬”R.qx

untitled

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

参加報告書

P70

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

2016

ver Web

6 ( ) 1 / 53

弾性定数の対称性について

LL 2



r


301-A2.pdf

all.dvi

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

Untitled

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s




エジプト、アブ・シール南丘陵頂部・石造建造物のロータス柱の建造方法

2001 年度 『数学基礎 IV』 講義録


ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

untitled


1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

‚æ27›ñ06-…|…X…^†[

(1)2004年度 日本地理

ŠéŒØ‘÷†u…x…C…W…A…fi…l…b…g…‘†[…NfiüŒå†v(fl|ŁŠ−Ù) 4. −mŠ¦fiI’—Ÿ_ 4.1 −mŠ¦ŁªŁz‡Ì„v”Z

MRI X......

.g.i.~.^.A

ヴィエトナム高原におけるマッシュルーム栽培の基本

2.

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

linearal1.dvi

行列代数2010A

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.


テクノ東京21 2003年6月号(Vol.123)

numb.dvi

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

°ÌÁê¿ô³ØII

HP・図書リスト( ).xlsx


‚䔃OK

000ŒÚ”Ł

28Łª”q-11…|…X…^†[

.....I.v.{..

「個人をどう捉えるか」で変わる教育シーン


untitled

untitled


Part () () Γ Part ,

min. z = 602.5x x 2 + 2


2

2


2



A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

( ) œ ,475, ,037 4,230,000 4,224,310 4,230,000 4,230,000 3,362,580 2,300, , , , , , ,730 64,250 74

meiji_resume_1.PDF

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

Transcription:

11 okamotoy@uec.ac.jp 2019 1 25 2019 1 25 10:59 ( ) (11) 2019 1 25 1 / 38

1 (10/5) 2 (1) (10/12) 3 (2) (10/19) 4 (3) (10/26) (11/2) 5 (1) (11/9) 6 (11/16) 7 (11/23) (11/30) (12/7) ( ) (11) 2019 1 25 2 / 38

( ) 8 (2) (12/14) 9 (1) (12/21) 10 (2) (1/11) (1/18) 11 (1/25) 12 (2/1) 13 (2/8) (2/15 ) ( ) ( ) (11) 2019 1 25 3 / 38

Lovász Lovász ( ) (11) 2019 1 25 4 / 38

1 2 3 Lovász 4 Lovász 5 Lovász 6 ( ) (11) 2019 1 25 5 / 38

n 1 A R n n A (positive semidefinite matrix) x R n ( ) 1 0 0 0 x Ax 0 ( ) ( ) ( ) 1 0 x x y = x 2 0 0 y A A O A A ( ) (11) 2019 1 25 6 / 38

n 1 A R n n 1 A 2 A ( ) 3 J {1, 2,..., n} det(a JJ ) 0 A JJ J J A 4 L R n r A = LL r = rank A (A (Cholesky decomposition)) ( ) 1 0 1, 0 0 0 0 ( ) ( ) 1 0 1 (1 ) = 0 0 0 0 ( ) (11) 2019 1 25 7 / 38

n 1 S n R n n n S+ n R n n n ( ) ( ) ( ) 1 0 3 1, S 2 1 2 +, S+ 0 0 1 2 2 1 2 S n + S n + ( ) (11) 2019 1 25 8 / 38

1 2 3 Lovász 4 Lovász 5 Lovász 6 ( ) (11) 2019 1 25 9 / 38

(semidefinite programming) n 1, m 0 C, A 1,..., A m R n n b 1,..., b m R ( X ) maximize C X subject to A i X = b i (i {1,..., m}) X O n n C X = C ij X ij = tr(c X ) i=1 j=1 ( ) (11) 2019 1 25 10 / 38

max. C X max. c x s. t. A i X = b i (i {1,..., m}) X O s. t. a i x = b i (i {1,..., m}) x 0 ( ) (11) 2019 1 25 11 / 38

maximize C X subject to A i X = b i (i {1,..., m}) X O { = X S n A i X = b i X O (i {1,..., m}) } {X X O} (S n + ) A i X = b i A i X b i A i X b i 2 ( ) (11) 2019 1 25 12 / 38

( ) maximize C X subject to A i X = b i (i {1,..., m}) X O { = X S n A i X = b i X O (i {1,..., m}) } ( ) (11) 2019 1 25 13 / 38

1 2 3 Lovász 4 Lovász 5 Lovász 6 ( ) (11) 2019 1 25 14 / 38

László Lovász (1948 ) http://web.cs.elte.hu/ lovasz/ ( ) (11) 2019 1 25 15 / 38

Lovász G = (V, E) n = V Lovász G Lovász (Lovász number) (LOV) maximize u V v V X uv subject to X uv = 0 ({u, v} E) X vv = 1 v V X O ( X S+) n G Lovász ϑ(g) ( ) (11) 2019 1 25 16 / 38

Lovász G = (V, E) n = V Lovász G Lovász ϑ(g) (LOV) maximize u V v V X uv subject to X uv = 0 ({u, v} E) X vv = 1 v V X O ( X S+) n ( ) (11) 2019 1 25 17 / 38

Lovász G = (V, E) Lovász ω(g) ϑ(g) χ(g) Lovász 1 ω(g) ϑ(g) 2 ϑ(g) χ(g) ( ) (11) 2019 1 25 18 / 38

Lovász (1) C G y R n { 1 (v C) y v = 0 (v C) X = 1 C yy ( ) (11) 2019 1 25 19 / 38

Lovász (2) X = 1 C yy X (LOV) X (c.f. ) {u, v} E u, v C v V X vv = v V X uv = 1 C y uy v = 0 1 C y v 2 = 1 C C = 1 X uv ϑ(g) = (LOV) u V v V = 1 C y uy v = 1 C C 2 = C = ω(g) u V v V ( ) (11) 2019 1 25 20 / 38

Lovász G = (V, E) Lovász ω(g) ϑ(g) χ(g) Lovász 1 ω(g) ϑ(g) ( ) 2 ϑ(g) χ(g) ( ) (11) 2019 1 25 21 / 38

Lovász (1) X (LOV) χ(g) = k V k V 1,..., V k j {1,..., k} y j R n { yv j 1 (v V j ) = 0 (v V j ) ( ) (11) 2019 1 25 22 / 38

Lovász (2) X (ky j 1) X (ky j 1) 0 0 k (ky j 1) X (ky j 1) j=1 k = k 2 y j X y j 2k j=1 k = k 2 k y j X 1 + j=1 k 1 X 1 j=1 X vv 2k1 X 1 + k1 X 1 j=1 v V j = k 2 X vv k X uv v V u V v V = k 2 kϑ(g) ϑ(g) k = χ(g) ( ) (11) 2019 1 25 23 / 38

Lovász G = (V, E) Lovász ω(g) ϑ(g) χ(g) Lovász 1 ω(g) ϑ(g) ( ) 2 ϑ(g) χ(g) ( ) ( ) (11) 2019 1 25 24 / 38

1 2 3 Lovász 4 Lovász 5 Lovász 6 ( ) (11) 2019 1 25 25 / 38

Lovász G = (V, E) n = V Lovász G Lovász (Lovász number) (LOV) maximize G Lovász ϑ(g) u V v V X uv subject to X uv = 0 ({u, v} E) X vv = 1 v V X O ( X S n +) ϑ(g) ( ) (11) 2019 1 25 26 / 38

ϑ(g) χ(g) X ( ) 2 Xuv 2 X uv χ(g) 2 u V v V u V v V χ(g) ( ) ( ) (11) 2019 1 25 27 / 38

(1) (LOV) = X S n X uv = 0 ({u, v} E) X vv = 1 v V X O n 2 1 n(n + 1) E 1 2 X ( ) 1 (u = v) X uv = n 0 (u v) ( ) (11) 2019 1 25 28 / 38

(2) X uv = 0 ({u, v} E) (LOV) = X S n X vv = 1 v V X O X A R n n i a ii a ij j i ( ) (11) 2019 1 25 29 / 38

(1) A R n n A λ 1 x x x i k (x k 0 ) Ax = λx k n a kj x j = λx k j=1 a kj x j = (λ a kk )x k j k ( ) (11) 2019 1 25 30 / 38

(2) ( ) x k 0 a kj x j j k λ a kk = a kj x j x k x k j k A λ a kk a kk a kj j k λ [0, 2a kk ] λ 0 ( ) (11) 2019 1 25 31 / 38

Lovász G = (V, E) n = V Lovász G Lovász (Lovász number) (LOV) maximize u V v V X uv subject to X uv = 0 ({u, v} E) X vv = 1 v V X O ( X S n +) Lovász ( ) (11) 2019 1 25 32 / 38

1 2 3 Lovász 4 Lovász 5 Lovász 6 ( ) (11) 2019 1 25 33 / 38

Lovász ω(g) ϑ(g) χ(g) ϑ(g) G ω(g) = χ(g) ω(g) = ϑ(g) = χ(g) ϑ(g) ω(g), χ(g) ( ) (11) 2019 1 25 34 / 38

1 2 3 Lovász 4 Lovász 5 Lovász 6 ( ) (11) 2019 1 25 35 / 38

Lovász Lovász ( ) (11) 2019 1 25 36 / 38

( ) OK OK ( ) (11) 2019 1 25 37 / 38

1 2 3 Lovász 4 Lovász 5 Lovász 6 ( ) (11) 2019 1 25 38 / 38