1. A0 A B A0 A : A1,...,A5 B : B1,...,B

Similar documents
1. A0 A B A0 A : A1,...,A5 B : B1,...,B


() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

i

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0


2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

untitled

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

n ( (

meiji_resume_1.PDF

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

DVIOUT

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

Z: Q: R: C: sin 6 5 ζ a, b

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

D 24 D D D

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

: , 2.0, 3.0, 2.0, (%) ( 2.


e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

2011de.dvi

Part () () Γ Part ,

p-sylow :

°ÌÁê¿ô³ØII

mugensho.dvi

Note.tex 2008/09/19( )

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

201711grade1ouyou.pdf

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

Z: Q: R: C:


6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

( ) ( )

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B


Gmech08.dvi

II 2 II

³ÎΨÏÀ

数学Ⅱ演習(足助・09夏)

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2


z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

2000年度『数学展望 I』講義録

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

pdf


医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

Chap11.dvi

B

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )


1

基礎数学I

v er.1/ c /(21)

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

Transcription:

1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5.

A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6) f : Z Z f(n) = n π = h f h : Z Z/ Z/ 1

A1 C, V = M 3 (C) 3, V C A M 3 (C), V f A : V V f A (X) = AX + XA (1) α C f A αi = f A 2α I f A 2α 2α V 2α (2) A, B M 3 (C), P B = P 1 AP, φ : V V f B = φ f A φ 1 (3) T J 1 1 1 T = 1 1 1 2 2 4, P 1 T P = J P (4) (3) T, f T : V V A2 a > 0 f a (x) = { ax + x 2 sin 1 x x 0 0 x = 0. (1) f a (x). (2) f a (x) C 1 -. (3) a > 1., f a 0. (4) 0 < a 1., 0 f a. 2

A3 f : R R 2 f(t) = ( ) 4t 3 + t, 4t 2 4 3 + t 4 f R R 2 (1) (1, ) R f f(1, ) R 2 (2) f R f(r) R 2 (3) f (4) f f : R f(r) f 1 : f(r) R f(r) R 2 A4 m. X k, k = 1, 2,..., m 1. (, x > 0 P (X k x) = e x.) (1) 0 < a < b. X 1 > a X 1 > b. (2) S m m X k. k=1 (3) λ. S m λ. 3

A5 Pascal ( ) function f(n: integer; a, b, c: boolean) : boolean; var ta, tb, tc : boolean; var r : integer; begin ta := false; tb := false; tc := false; r := n mod 4; n := n div 4; if c and (r = 1) then tc := true; if b then begin case r of 1 : tc := true; 2 : begin tb := true; tc := true; end end end; if a then begin case r of 1 : tc := true; 2 : begin tc := true; tb := true; end; 3 : begin ta := true; tb := true; tc := true; end end end; if (n > 0) then f := f(n, ta, tb, tc) else if (r = 0) then f := true else f := tc; end; (1) f(22, false, true, true) f(22, false, false, true) (2) x integer x 0 f(x, true, true, true) true x 4

B1 F 3 = Z/3Z 3 F 3 2 GL 2 (F 3 ) SL 2 (F 3 ) { ( ) } a b GL 2 (F 3 ) = A = c d a, b, c, d F 3, det(a) 0 SL 2 (F 3 ) = { A GL 2 (F 3 ) det(a) = 1 } (1) GL 2 (F 3 ), SL 2 (F 3 ) G = SL 2 (F 3 ) G S, T, U ( ) ( ) ( ) 1 1 0 1 1 1 S =, T =, U = 1 1 1 0 0 1 (2) S, T (3) G S, T, U (4) G (Sylow) 3 (5) G D(G) 5

B2 1 R R 2 I, J R- M = (R/I) (R/J) = {(a + I, b + J) a, b R} f : R/I M, g : R/J M φ : R M f(1 R + I) = (1 R + I, J), g(1 R + J) = (I, 1 R + J), φ(1 R ) = (1 R + I, 1 R + J) R- σ : R/I R/(I + J) τ : R/J R/(I + J) σ(1 R + I) = 1 R + (I + J), τ(1 R + J) = 1 R + (I + J) R- (1) ψ : M R/(I + J) ψ f = σ ψ g = τ R- a, b R ψ (a + I, b + J) M (2) ψ Im φ = Ker ψ (3) a R a + (I J) a + (I + J) R/(I J) R/(I + J) a + I a + J R/I R/J S x y S xy = 0 y = 0 6

B3. F : R 3 R F (x, y, z) = x 2 + y 2 z 2, q M q = F 1 (q) (1) M q q 0. q 0. (2) M q p 0 = (x 0, y 0, z 0 ) M q. {(x, y, z) x 0 x + y 0 y z 0 z = q} (3) a, b, c a 2 + b 2 + c 2 = 1, h : M q R h(x, y, z) = ax + by + cz. h a, b, c., h, (ξ, η) h/ ξ = h/ η = 0. (4) φ : R ( π, π) M 1. M 1 2 φ φ ω. φ(t, θ) = (cosh t cos θ, cosh t sin θ, sinh t) ω = xdy dz + ydz dx zdx dy B4 R 3 X, Y X = {(x, y, z) R 3 x 2 + y 2 + z 2 = 1}, Y = {(x, y, z) R 3 x 2 + y 2 + z 2 = 1/4} {(0, 0, z) R 3 1/2 z 1} Z = X Y (1) X H 0 (X; Z), H 1 (X; Z), H 2 (X; Z) (2) Y H 0 (Y ; Z), H 1 (Y ; Z), H 2 (Y ; Z) (3) Z H 0 (Z; Z) (4) Z H 1 (Z; Z), H 2 (Z; Z) H 1 (Z; R), H 2 (Z; R) 7

B5 C r D r = {z C z < r}, D 1 f(z) f(z) = 1 2 log 1 + z 1 z., f(0) = 0., w Im w. (1) f(z) z = 0,. (2) f : D 1 C, Ω = f(d 1 ). (3) 0 < r < 1, sup z D r Im f(z). (4) g(z) D 1 g(0) = 0, g(d 1 ) Ω,. g (0) 1 B6 y(x) x 0. (1) (y (x)) 2 = 1 2 y(x)4 y(x) 2 + 1 2, y(0) = 2,. x 0 y(x) > 1 y (x) 0. (2) y (x) = y(x) 3 y(x), y(0) = 0, y (0) = 1 2. 8

B7 [0, 1] µ H 2 H f, g = 1 0 f(x)g(x) dµ(x) T : H H (T f)(x) = (1) T (2) n = 1, 2,... f H (T n+1 f)(x) = 1 n! x 0 x 0 f(y) dµ(y) (3) n = 1, 2,... T n+1 1/n! (4) T 0 (5) T T (T f + T f)(x) = (x y) n f(y) dµ(y) 1 0 f(y) dµ(y) 9

B8 X j, j {1, 2,...} p. ( j P (X j = 1) = p, P (X j = 0) = 1 p (p (0, 1)).) m {1, 2,...} Y m +, Ym, Z m Y + m = m X j, Ym = j=1 m j=1 ( 1) j 1 X j, Z m = min{n Y + n m}.. (1) Y + m Y m,. (2) m, n {1, 2,...} Cov(Y + m, Y n ). (3) k {1, 2,...} P (Z 1 = k) = (1 p) k 1 p. (4) k, m {1, 2,...} P (Z m = k) B9 (1) (X, Y ) E[X] X E[X Y ] Y X.. E [E[X Y ]] = E[X] (2) S, T U = E[T S]. θ W 2 MSE(W ) = E[(W θ) 2 ]. (i) MSE(U) MSE(T ). (ii) L( ) θ E[L(U)] E[L(T )]. 10

B10. = φ φ (logically valid). (1) R Q 2 1. φ ( x y R(x, y) z Q(z)) (prenex normal form) θ. θ = φ θ, (quantifier) Q i =, θ 0 θ (Q 1 x 1 Q n x n θ 0 ) (n = 0, 1,...). (2) φ(x, y) = x yφ(x, y) = xθ(x) θ(x). (3) L 2. L φ F (φ) F, φ = φ = F (φ). F., L-. B11 F 2 F 2 [X] 15 C C = {f(x) F 2 [X] f(α 6 ) = f(α 7 ) = 0, deg f < 15} deg f f α X 4 + X + 1 F 2 [X] (1) C F 2 (2) C 5 C f(x) = g(x) = 0 i 14 g i X i d(f(x), g(x)) = #{0 i 14 f i g i } (3) C [15, 7] 7 0 i 14 f i X i, 11

B12 Scheme (define (concat ll) (if (null? ll) () (append (car ll) (concat (cdr ll))))) (define (substr s l h) (list s l h)) (define (str s) (car s)) (define (low s) (cadr s)) (define (high s) (caddr s)) (define (len s) (- (high s) (low s))) (define (inclow n s) (substr (str s) (+ (low s) n) (high s))) (define (inchigh n s) (substr (str s) (low s) (+ (high s) n))) (define (dechigh n s) (substr (str s) (low s) (- (high s) n))) (define (output r s) (cons r s)) (define (result o) (car o)) (define (next o) (cdr o)) (define (rfun1 r) 1) (define (rfun2 r1 r2) (+ r1 r2)) (define (a lit) (lambda (s) (let ((n (string-length lit))) (if (and (<= n (len s)) (string=? (substring (str s) (low s) (+ (low s) n)) lit)) (list (output (rfun1 lit) (inclow n s))) ())))) (define (seq p1 p2) (lambda (s) (let ((f (lambda (rs1) (map (lambda (rs2) (output (rfun2 (result rs1) (result rs2)) (next rs2))) (p2 (next rs1)))))) (concat (map f (p1 s)))))) (define (alt p1 p2) (lambda (s) (append (p1 s) (p2 s)))) 12

(define (pe s) ((alt (seq (a "+") (seq pe pe)) (a "")) s)) (define (run p s) (filter (lambda (rs) (= (low (next rs)) (high (next rs)))) (p (list s 0 (string-length s))))) : Scheme " 0 ( ) string-length 2 string=? s l h 1 (s l h) ( 0 ) (substring s l h) Scheme (1) ((a "1") ("12" 0 2)) (2) ((seq (a "1") (a "2")) ("12" 0 2)) (3) (run pe "++") (4) n s n + n (length (run pe s n )) a n a n a i (0 i n 1) 13