MOSFET HiSIM HiSIM2 1

Similar documents
untitled

スライド 1

13 2 9

PowerPoint プレゼンテーション

U.C. Berkeley SPICE Simulation Program with Integrated Circuit Emphasis 1) SPICE SPICE netli

PowerPoint Presentation

untitled

devicemondai

橡Taro11-卒業論文.PDF

MOSFET 6-2 CMOS 6-2 TTL Transistor Transistor Logic ECL Emitter Coupled Logic I2L Integrated

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

Microsoft PowerPoint - semi_ppt07.ppt

Microsoft PowerPoint - semi_ppt07.ppt [互換モード]

30

i

Microsoft PowerPoint - 4.1I-V特性.pptx

untitled

B1 Ver ( ), SPICE.,,,,. * : student : jikken. [ ] ( TarouOsaka). (, ) 1 SPICE ( SPICE. *1 OrCAD

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

Part () () Γ Part ,

(4.15a) Hurwitz (4.15a) {a j } (s ) {a j } n n Hurwitz a n 1 a n 3 a n 5 a n a n 2 a n 4 a n 1 a n 3 H = a n a n 2. (4.16)..... a Hurwitz H i H i i H

電子回路I_4.ppt

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

Mott散乱によるParity対称性の破れを検証

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

入試の軌跡

PowerPoint Presentation

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n


QMI_10.dvi

pdf


C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

技報65

VLSI工学

II 2 II

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

PowerPoint Presentation

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

arma dvi

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π


4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

Untitled

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

IBIS Quality Framework IBIS モデル品質向上のための枠組み

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

I II

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

untitled



P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

Transcription:

MOSFET 2007 11 19 HiSIM HiSIM2 1

p/n Junction Shockley - - on-quasi-static - - - Y- HiSIM2 2

Wilson E f E c E g E v Bandgap: E g Fermi Level: E f HiSIM2 3

a Si 1s 2s 2p 3s 3p HiSIM2 4

Fermi-Dirac Distribution Density-of of-state 1 f(e) D g(e) Carrier Concentration [ ] D p Ev E f E f n i 1- f ( E) g( E) ( ) ( ) D g E f Ec n E E n= N N f E E c : effective density of state N v : E n i =1.4x10 10 /cm 3 n = c p= N E Ec E E v top v bottom exp exp ( ) ( ) g E f E de ( ) ( ) p = g E f E de Ec -E kt fn E -E fp kt D (1- ) D v HiSIM2 5

p n Si Si Si Si Si Si Si -q Si Si Si B Si +q Si Si Si Si Si Si Si Si Si Si p + Si Si Si Si +q -q n i =1.4x10 10 /cm 3 Ev E f Ec E Ev E f Ec E Ev E f Ec E HiSIM2 6

Fermi n= n p= n c - fn cexp E E N c kt - fp v vexp E E N v kt = n i exp(-q(φ fn -φ i )/kt) = n i exp(-q(φ i -φ fp )/kt) E c E fn E=-qφ N c N v exp(e g /kt)=n i 2 E i E fp pn=n 2 i E v HiSIM2 7

p/n p/n Junction Equilibrium Condition - +q - +q - +q - +q + -q + -q + -q + -q - +q - +q - +q - +q + -q + -q + -q + -q - +q - +q - +q - +q + -q + -q + -q + -q - +q - +q - - - +q - +q - - - +q - +q - - / + + + -q + -q + + + -q + -q + + + -q + -q - + : N A : N D depletion region) HiSIM2 8

Fermi E fp p-type qx qφ f p n-type qφ f n E 0 E E c fn E v p/n E fp E c E fn E v Depletion Region - - ε E c E E f i E v HiSIM2 9

Poisson (x) E(x)=-dφ/dx ε ε ε ε ε HiSIM2 10

HiSIM2 11

HiSIM2 12

MOSFET Vg SOURCE v d Metal Electrode Oxide z SOURCE GATE DRAIN y n + Tox r j n+ x Channel L P-Type w Vb HiSIM2 13

HiSIM2 14

MOSFET Meyer Model J. E. Meyer, RCA Rev., vol. 32, p. 42, 1971. C. T. Sah, IEEE TED, ED11, 324, 1964. HiSIM2 15

MOSFET V gs V ds E y E x I qnv q: n: v V gs V ds HiSIM2 16

Vgs Semiconductor Surface E C E g ( φ > ) S qφ S 0 qφ qφ B E i E F E V Insulator p-type Semiconductor x HiSIM2 17

E F V <0 p -type - - + + + + + + + + + ++ E C E i E F E V V 0 E F V >0 n -type --- -- - - - - - - - + + E C E F E i E V V >0 E F - - - + + + + + E C E i E F E V E F V <0 - - - - - + + + E E C E F i E V V >0 E F - --- - - - - - - - + + + + + E C E i E F E V E F V <0 - + ++ + + ++ + - - - - + + + E C E E F i E V HiSIM2 18

HiSIM2 19

( x ) Poisson :φ s 2 d φ ρ = 2 dx ε S ρ ( x) = q( N D N A + p n) N D N A = np0 pp0 p n = p exp ( βφ) n exp ( βφ) p0 Gradual Channel p0 x 2 φ = q ( ) ( ) ε p exp βφ 1 n exp βφ 1 2 p0 p0 x S φ/ x q φ ( ) ( ) d = ε p exp φ 1 n exp 1 d 0 x x 0 p0 p0 E 2 S φ φ β βφ φ 2 qp β 2kT n p0 = ( β q exp φ) + βφ+1 + p0 ( βφ) βφ 2ε p exp 1 E S si p0 ε = E ε = Q S : E ox ox s s HiSIM2 20

MOS HiSIM2 21

φ S Q b =sqrt(βφ s ) Q i =function(φ s ) charge-sheet HiSIM2 22

HiSIM2 23

V gs V ds E y E x I qnv q: n: v V gs V ds HiSIM2 24

d I = φ ds Wµ qn dy Ids dy = Wµ qndφ φ y = φ + V y ( ) ( ) 0 (y) Gauss Eoxε ox = ESiε Si = QS Vgs Vfb φ ( xy) = 0) ε T ox = Q Q ox n b ( ) 2 ( ) Q n = qn= Vgs Vfb φ0 V y Cox + εsiqnsub φ0 + V y L I dy = Wµ ds V ds 0 0 Q dv n W 1 I = µ C ( Vgs V ) V V L 2 2 ds ox th ds ds φ 0 =2Φ B ; V th = 2Φ + B 2E qn 2Φ C Si sub B ox HiSIM2 25

I ds V th V ds HiSIM2 26

HiSIM2 27

MOS φ f : (0 V ds ) φ s? V gs HiSIM2 28

φ φ φ SL : Gradual-Channel HiSIM2tut028 29

(y) ( ) ( ) ( ) dlnn y 1 dn y = dy n y dy ( ) ( ) I dφ y dn y ds s + n( y) β = W qµ dy dy eff L 0 ( ) I = I y dy ds ( ) ( ) C V y Q qn y ox G φs = B + ds HiSIM2 30

HiSIM2 32

HiSIM2 33

φ φ 2Φ B φ SL : Gradual-Channel HiSIM2tut028 34

- - HiSIM2 35

HiSIM2 36

Gradual-Channel φ φ HiSIM2 37

Channel-Length Modulation HiSIM2 38

HiSIM2 39

HiSIM2 40

Drift : : : HiSIM2 41

I x (t)=i x (V(t))+dQ x /dt HiSIM2 42

HiSIM2 43

HiSIM2 44

tut041 HiSIM2 45

tut042 HiSIM2 46

HiSIM2105 tut051 HiSIM2 47

IdVd gds NMOS Large HiSIM2 Measurement IdVg_low IdVg_low gm_low gm2_low gm3_low IdVg_high IdVg_high gm_high gm2_high gm3_high HiSIM2 48

L gate =40nm HiSIM2 49

HiSIM2 50

s SPICE ) HiSIM2 51

Donald O. Pederson You don t get any credit for doing 95 percent of the job. SPICE: Simulation Program with Integrated Circuit Emphasis HiSIM2 52

Circuit Simulator : Finding a set of for SPICE I ( I, I, I,... I ) s 1 2 3 n V = ( V, V, V,... V ) s 1 2 3 n by fulfilling the kirchhof law. m m+1 m V =V - I m g g V = - I + g V m I m m+1 m m m m+1 V m V Newton s Method HiSIM2 53

2 (V 2 ) I 21 Device1 1 (V 1 ) I 11 I 12 I I 13 31 I 22 Device2 I 42 I 1 =I 11 +I 12 +I 13 I 2 =I 21 +I 22 I 3 =I 31 +I 13 3 (V 3 ) Device3 I 33 I 43 m m m m m m I11 I11 I 11 I11 I11 I 11 + + + + + + V1 V2 V3 m+1 m V1 V2 V 3 V 1 +I m 11 V 1 m m m m I21 I21 I m m 21 m+1 m I21 I 21 I m + + + V 2 = - +I 21 + 21 + + + V2 V1 V2 V3 V m+1 m 1 V2 V3 m m m m V 3 +I31 I31 I31 I m m m V3 31 + + + I31 I31 I 31 + + + V1 V2 V 3 V1 V2 V 3 HiSIM2 54