2016 B S option) call option) put option) Chicago Board Option Exchange;CBOE) F.Black M.Scholes Option Pricing Model;OPM) B S 1

Similar documents
9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

untitled

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

Microsoft Word - 11問題表紙(選択).docx

30

untitled

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

応力とひずみ.ppt

0 = m 2p 1 p = 1/2 p y = 1 m = 1 2 d ( + 1)2 d ( + 1) 2 = d d ( + 1)2 = = 2( + 1) 2 g() 2 f() f() = [g()] 2 = g()g() f f () = [g()g()]

K E N Z OU

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Untitled


F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

16 7 5

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P


1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

201711grade1ouyou.pdf

II 2 II

meiji_resume_1.PDF

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

i 18 2H 2 + O 2 2H 2 + ( ) 3K



Part () () Γ Part ,

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

KENZOU

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

pdf

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT



II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

( ) ( )

Z: Q: R: C: sin 6 5 ζ a, b

Acrobat Distiller, Job 128

DVIOUT

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

2011de.dvi

untitled

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )


i

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1


mf.dvi

1


1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

LLG-R8.Nisus.pdf

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

液晶の物理1:連続体理論(弾性,粘性)

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

untitled



genron-3

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

II 1 II 2012 II Gauss-Bonnet II

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1



( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

05Mar2001_tune.dvi

6.1 (P (P (P (P (P (P (, P (, P.

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

Transcription:

206 B S option) call option) put option) 7 973 Chicago Board Option Exchange;CBOE) F.Black M.Scholes Option Pricing Model;OPM) B S

997 Robert Merton A 20 00 30 00 50 00 50 30 20 S, max(0, S-) C max(0,s ) C P/L コール オプション購入者の損益 P/L O 株価 (S) 2

P/L プット オプション購入者の損益 株価 p/l ストラドル ホルダーの損益 株価 3

p/l ストラドル ライターの損益 株価 P/L 株の買い持ち プロティクティブ プット 株価 プット オプションの買い 4

P/L 株の買い持ち カバード コールの損益 株価 コール オプションの売り 80 80 Strike Price) 80 0-80 ().5 20 20 80 40.5 80 40..5 80 -. 40 50 40 5

0.5 80 -., 8.8 2.82 2 2.82 S ), r), S,, r () (2) (3) option replicating theory replicate u(.5 d( 0.5 r(. C u C d t t + t { C S B = 0 Cu + us rb = 0 t + C d + ds rb = 0 = C u C d S(u d) B = dc u uc d r(u d) C = r p = r d u d [ ( r d u d )C u + ( u r ] u d )C d C = r [pc u + ( p)c d ] p = u r u d p C u C d 6

C : S : : r : σ : N(d) : d price taker) r σ ds = (αs)dt + (σs)dz α σ z E(z) = 0, V ar(z) = E(z 2 ) = t dz = dt f S t f = f(s, t) df = f s ds + f t dt + 2 f ssds 2 + f st dsdt + 2 f ttdt 2 + (2-3) f s = f S, f t = f t, etc. 7

df = σsf s dz + ( 2 σ2 S 2 f ss + αsf s + f t )dt + O(dt 3 2 ) O(dt) df = σsf s dz + ( 2 σ2 S 2 f ss + αsf s + f t )dt f df = (α 0 f)dt + (σ 0 f)dz 0 α 0, σ 0 dz = dz 0 α 0 f = 2 σ2 S 2 f ss + αsf s + f t σ 0 f = σsf s W 0, W, W 2 W 0 + W + W 2 = 0 arbitrage portfolio) V dv = W 0 rdt + W (ds/s) + W 2 (df/f) = ( W W 2 )rdt + W (ds/s) + W 2 (df/f) = W (ds/s rdt) + W 2 (df/f rdt) dv = {W (α r) + W 2 (α 0 r) dt + (W σ + W 2 σ 0 )dz W (α r) + W 2 (α 0 r) = 0 W σ + W 2 σ 0 = 0 2 W W 2 2 0 2 σ 0 (α r) = σ(α 0 r) 8

2 σ2 S 2 f ss + rsf s + f t rf = 0 f(s, t) 2 3 f(s, T ) = φ(s) 2 3 u t = a 2 u xx (a : t = T t(> 0) f(s, τ) = e rt Y (S, τ) 2 5 2 σ2 S 2 Y ss + rsy s Y τ = 0 S, τ ξ(s, τ), η(s, τ) chain rule Y s = ξ s Y ξ + η s Y η Y τ = ξ τ Y ξ + η τ Y η Y ss = ξ ss Y ξ + ξ s ξ s Y ξξ + η ss Y η + η s η s Yηη = ξ ss Y ξ + ξsy 2 ξξ + η ss Y η + ηsyηη 2 2 6 Y = Y (S, τ) = Y (ξ(s, τ), η(s, τ)) 2 σ2 S 2 (ξ ss Y ξ + ξ 2 sy ξξ + η SS Y η + η 2 sy ηη ) + rs(ξ S Y ξ + η S Y η ) (ξ τ Y ξ + η τ Y η ) = 0 2 σ2 S 2 ξ 2 SY ξξ + ( 2 σ2 S 2 ξ SS + rsξ S ξ τ )Y ξ + 2 σ2 S 2 η 2 SY ηη + ( 2 σ2 S 2 η ss + rsη s η τ )Y η = 0 (2 7 9

2 σ2 S 2 ξ SS + rsξ S ξ τ = 0 2 8 2 σ2 S 2 ξ SS + rsξ S = C(cons tan t) ξ τ = C 9 ξ = C ln S + g(τ) (C = C (r /2σ 2 )) 2 20 g τ =C C = ξ ξ = ln S + (r /2σ 2 )τ η s = 0 η η(τ) 2 22 2 7 η τ = 2 σ2, 2 σ2 Y ξξ η τ Y η = 0 2 23 η = 2 σ2 τ 2 24 Y ξξ = Y η 2 25 2 25 τ = 0 f(s, 0) = φ(s) f(s, τ) f(s, τ) = e rτ 2 πη (x ξ)2 φ(x) exp dx 2 26 4η ξ = ln S + (r 2 σ2 )τ η = 2 σ2 τ 0

{ S (S > ) φ(s) = 0 (S ) { e ξ (ξ > ln ) φ(ξ) = 0 (ξ ln ) 価値 満期のコール オプションの価値 O 株価 (S) 2 28 26 f(s, τ) = e rτ 2 (e x ) exp πη ln q = x ξ 2η dq = q = ln ξ 2η 2 26 f(s, τ) = e rτ 2 2η πη q = e rτ q dx 2η (x ξ)2 4η (e 2η q+ξ )e (e 2η q+ξ )e q 2 2 dq q 2 2 dq = e rτ (e ξ e q 2 2 + 2ηq e q2 2 )dq = e rτ+ξ+η q = S q + q 2η 2η e 2 t2 dt e rτ dx 2 26 q e 2 t2 dt e rτ f(s, τ) = SN( q + 2η) e rτ N( q + ) q + ln S 2η = + (r + 2 σ2 )τ σ d τ q e q 2 2 dq e ln S q = + (r 2 σ2 )τ σ = d σ τ τ q 2 2 dq (e rτ+ξ+η = S) f(s, t) = SN(d) e rτ N(d σ τ) 2-27

(95 2008 S = S t + σs z -28 t S t σs S t σs z σ dz dz = dt Z Z σ 828 905 (Brownian motion process) Wiener- levy process) S/S ln S/S ln S /S) = µ t + σ Z 2-30 S = Se µ t+σ Z 2 3 µ t + σ Z) e x e x = + x + x2 2 + x3 6 + S /S = + (µ t + σ Z) + (µ t + σ Z) 2 /2 + (2-32) = + σ Z + (µ + σ 2 Z 2 /2) + t) 2, ( 3, 2

S /S = + S /S 2-32 S /S = (µ + σ 2 Z 2 /2) + σ Z 2-33 2-33 2-28 (µ + σ 2 Z 2 /2) σ z = σ Z -29 us(, ds( C u, C d C = [pc u + ( p)c d ] /r uus uds dus dds C uu C ud C du C dd - C u = [pc uu + ( p)c ud ] /r C d = [pc ud + ( p)c dd ] /r C = [ p 2 C uu + 2p( p)c ud + ( p) 2 C ud ] /r 2 C = (/r) n { n a= [n!/(n a)!a!] pa ( p) n a C u a d n a - C u a d n a = Max [0, u a d n a S ] u a d n a S > 0) m a < m a m a < m C ua d n a C ua d n a = 0, a m = Max [0, u a d n a S ] = u a d n a S C = (/r) n { n a=m [n!/(n a)!a!] pa ( p) n a [u a d n a S ] ( - C = S n a=m p u r )p n! (n a)!a! pa ( p) n a ua d n a r n n r n a=m p =(d/r)( p) C = S n a=m n! (n a)!a! pá ( p ) n a n r n a=m n! (n a)!a! pá ( p ) n a B(m; n, p n a=m n! (n a)!a! pa ( p) n a n! (n a)!a! pa ( p) n a - 3

B(m; n, p n n! a=m (n a)!a! pa ( p) n a C = SB(m; n, p r n B(m; n, p) p = (r d)/(u d), p = (u/r)p n B(m; n, p N(d) B(m; n, p) N(d σ τ) S S T τ τ = T t) S D(S ) P/L { S (S > P/L = 0 (S S S E(profit) E profit) = E(S ) = (S )D(S )ds ln S /S S /S y y f(y) = σ y exp (ln y µ)2 2σ 2 (y > 0) 0 (y 0) f a > 0 f(y)dy = N( ln a + µ ) σ a a σ2 µ+ yf(y) = e 2 N( ln a + µ + σ 2 ) σ 4

N(x) = x e x2 2 dx ( a 0 0 f(y)dy =, 0 yf(y)dy = exp(µ + σ2 2 ) f exp(µ + σ2 2 ) S /S S S /S D(S ) D(S ) = S f(s S ) = σ τ S exp (ln S /S µτ) 2 2σ 2 τ Ce rτ = (S )D(S )ds = = = = S (S ) S f(s S )ds S (St )f(t)sdt (S /S = t) /S /S /S (St )f(t)dt tf(t)dt /S f(t)dt = S exp(µ + σ2 2 )τn(ln S/ + (µ + σ2 )τ σ ) τ ln S/ + µτ N( σ ) τ rτ = (µ + σ2 σ2 )τ µ = r 2 2 ln S/ + (r + σ2 C = SN( 2 )τ σ τ ln S/ + (r σ2 ) e rτ N( 2 )τ σ τ ) = SN(d ) e rτ N(d 2 ) ln S/ + (r + σ2 d = 2 )τ σ τ d 2 = d! σ τ B S Ce rτ = (S )D(S )ds 5

= Se rτ N(d ) N(d 2 ) e rτ S D(S )ds = SN(d ) e rτ D(S )ds = e rτ N(d 2 ) ( (*) f(x)dx = a σ a x exp (ln x µ)2 2σ 2 = σ e t (t µ)2 exp ln a 2σ 2 = σ (t µ)2 exp ln a 2σ 2 dt = σ e k2 2 σdk ( t µ = k) σ (*) a ln a µ σ ln a (µ+σ 2 ) σ dx e t dt(ln x = t) =N( ln a µ ) = N( ln a + µ ) σ σ xf(x)dx = σ (ln x µ)2 exp a 2σ 2 dx = σ (t µ)2 exp ln a 2σ 2 e t dt (ln x = t) = eµ+ σ 2 { 2 { t (µ + σ 2 2 σ exp ln a 2σ 2 dt σ2 µ+ =e 2 σ e k2 σdk ( t (µ + σ2 ) σ σ2 µ+ =e 2 N( ln a + (µ + σ 2 ) ) σ ( e x2 2 dx = α ( α e x2 2 x f(x) dx = N( α)) x y = ϕ(x) g(y) g(y) = f(ψ(y)) dψ(y) dy ψ y = ϕ(x) x = ψ(y)) S /S x = ln S /S N x) = σ (x µ) 2 e 2σ 2 = k) g(y) = D(S ) = f(ψ(s ) dψ(s ) ds (x = ψ(s ) = ln S : /S) = σ exp (ln S /S µ) 2 2σ 2 S S S ) = σ S exp (ln S /S µ) 2 2σ 2 (S = S f(s S ) f 6

986 DYNAMIC ASSET ALLOCATION 986 988 mail: sakurasaku9286@willcom.com 7