爆発的星形成? AGN関係を 生み出す物理機構の観測的示唆

Similar documents
B

総研大恒星進化概要.dvi

MW鹿児島

( ) 2 self-consistent 1 3) ( ) 2.1 ( ) ( 1 kpc 10 8 M 10 4 K) ( 1) 10 K K tangled-web model ( ) 2

SFN

GJG160842_O.QXD

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

Ï¢À±ÃæÀŁ»ÒÀ±¤ª¤è¤Ó¥Ö¥é¥Ã¥¯¥Û¡¼¥ë¡ÝÃæÀŁ»ÒÀ±Ï¢À±¤Î¹çÂÎ ¡Á ½àÊ¿¹Õ²ò¤Î¸¦µæ¤Î¸½¾õ¤Èº£¸å¤ÎŸ˾ ¡Á

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

X u

本文/目次(裏白)

学会誌カラー(目次)/目次13‐1月

kawaguchi2.pdf

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

Ando_JournalClub_160708

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

1 Credit: NASA/JPL-Caltech/R. Hurt SSC-Caltech ,

gr09.dvi

概況


A 99% MS-Free Presentation

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j



( ) ,

atomic line spectrum emission line absorption line atom proton neutron nuclei electron Z atomic number A mass number neutral atom ion energy

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5


I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

Contents 1 Jeans (

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

PowerPoint Presentation

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

nsg02-13/ky045059301600033210

news

untitled


日本統計学会誌, 第44巻, 第2号, 251頁-270頁

Note.tex 2008/09/19( )

放射線化学, 92, 39 (2011)

The Physics of Atmospheres CAPTER :

( )

Microsoft Word - 11問題表紙(選択).docx


YITP50.dvi

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

ohpmain.dvi


1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

抄録/抄録1    (1)V

LLG-R8.Nisus.pdf

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0



E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

1 2 2 (Dielecrics) Maxwell ( ) D H

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

I

取扱説明書[N906i]

untitled

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

LAE で探る z~5 での AGN 環境と 周辺銀河へのフィードバック Based on Kikuta et al. in prep. 初代星 初代銀河研究会, Oct 25th Satoshi KIKUTA (SOKENDAI/NAOJ, M2) Collaborators: Masatoshi

ISLE 2010/08/17

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e


4 19

Continuous Cooling Transformation Diagrams for Welding of Mn-Si Type 2H Steels. Harujiro Sekiguchi and Michio Inagaki Synopsis: The authors performed

TOP URL 1

スケーリング理論とはなにか? - --尺度を変えて見えること--

P1〜14/稲 〃

数学の基礎訓練I

PDF


V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

sec13.dvi

pdf

I ( ) 2019

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

Fermi ( )

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

/Volumes/NO NAME/gakujututosho/chap1.tex i

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

V懇_2017.key

/Volumes/NO NAME/gakujututosho/chap1.tex i

液晶の物理1:連続体理論(弾性,粘性)

橡ボーダーライン.PDF

Transcription:

Umemura, Fukue & Mineshige 1997, 1998 Ohsuga et al. 1998 R ring ~100pc

dv r = v 2 ϕ dt r 1 dp ρ dr dφ 1 r d(rv ϕ ) dt = 3χE 2c typical timescale dr + χ c F r 3 2 Myr r R ring V ring 3χE 2c v ϕ Umemura, Fukue & Mineshige 1997, 1998 Ohsuga et al. 1998 χ c Ev r << Gyr r R ring ~100pc dφ dr GM dyn r 2 2 R ring M dyn = V ring G : F r : E : : V ring

dv r = v 2 ϕ dt r 1 dp ρ dr dφ dr + χ c F r 3 χ 2 c Ev r 1 r d(rv ϕ ) dt = 3χE 2c typical timescale r R ring V ring 3χE 2c v ϕ Umemura, Fukue & Mineshige 1997, 1998 Ohsuga et al. 1998 Myr << Gyr r r disk R ring ~100pc

Umemura, Fukue & Mineshige 1998 log Γ SB = L SB LEdd predicted radius r r disk R ring ~100pc M L Edd =1.7 10 10 L sun dyn 10 9 M sun f dg 0.03 1 a d ρ s 0.1µm 3gcm 3 r disk / R ring

Knapen 2005 non-agn 15 NGC278, 1300, 1512, 2903, 2997, 3184, 3344, 3351, 3593, 4254, 4984, 6574, 7552, 7742, 7771 AGN 12 NGC1068, 1097, 3486, 4303, 4314, 4321, 4736, 4826, 5248, 6951, 7217, 7469, Circinus galaxy

Knapen 2005 non-agn 15 NGC278, 1300, 1512, 2903, 2997, 3184, 3344, 3351, 3593, 4254, 4984, 6574, 7552, 7742, 7771 Seyfert galaxy LINER AGN 12 NGC1068, 1097, 3486, 4303, 4314, 4321, 4736, 4826, 5248, 6951, 7217, 7469, Circinus galaxy

NGC1097 (Seyfert galaxy) Kohno et al. 2003 disk radius ring radius [pc]350 700 1050 700pc 1.8 10 10 M 350~450pc 10 11 L

Watabe, Hirashita & Umemura (in submitted)

Watabe, Hirashita & Umemura (in submitted) log Γ SB = L SB LEdd r disk / R ring

Watabe, Hirashita & Umemura (in submitted) log Γ SB = L SB LEdd r disk / R ring

SB SB AGN AGN Γ AGN = L AGN bol AGN L L Edd Edd Watabe, Hirashita & Umemura (in submitted) AGN = 4πcGM BHm p σ T log Γ AGN = 0.23 ~ 1.3 Γ AGN = (5.6 ~ 7.9) 10 5 Γ AGN = 0.08 Γ SB = L SB LEdd Γ AGN = (0.39 ~ 4.1) 10 6 r disk / R ring

Γ AGN = L AGN bol AGN L Edd AGN = 4πcGM BHm p L Edd σ T log Γ AGN = 0.23 ~ 1.3 Γ AGN = (5.6 ~ 7.9) 10 5 Γ= L SB LEdd Γ AGN = 0.08 Mazzarella et al. 1994 Γ AGN = (0.39 ~ 4.1) 10 6 r disk / R ring

log ( ) log ( ) Imanishi & Wada 2004

Watabe, Kawakatu & Imanishi (in preparation)

AGN AGN SB AGN Nuclear starburst AGN

AGN AGN SB AGN Nuclear starburst AGN

13/18 Petrucci et al. 04; Davies et al. 04 Moorwood et al. 96 Nemmen et al. 04; 06 Ho et al. 99; Pellegrini 06 Collier et al. 98; Wandel et al. 99 M_bulge-M_BH relation Lewis & Eradeous 06 Pellegrini 05; Dong 06 Γ AGN = L AGN bol AGN L Edd AGN = 4πcGM BHm p L Edd σ T

all data

timescale t drag = 8πc 2 R ring 2 3χL SB t rad = 4πcR 3 ring χl SB 1/2

3/17 Questions What has caused the galactic nuclear activity? Are there any relations between the nuclear activity and galaxy evolution?

17/17 REQUESTS!!! Our results provide important idea, based on which future high-resolution observations can be planed to reveal the physical origin of starburst - AGN connection R disk M dyn or V ring r R ring L SB or L H detailed disk structure: ALMA

9/17 NGC7469 (Seyfert 1) Genzel et al. 1995 1 Mauder et al. 1994 K band image R ring 480 pc L SB 3 1011 L v ring : 100 km/s M dyn 1.1 10 9 M normalized intensity 0.1 0.01 disk radius ring radius 480 [pc] Radius [arcsec] r disk / R ring 0.3-0.47

NGC6951 (Seyfert 2)

Circinus galaxy (Seyfert 2)

NGC4314 (LINER)

NGC2903 (non-agn)

NGC3351 (non-agn)

8/13 NGC1097 (Seyfert galaxy) Kohno et al. 2003 disk radius ring radius [pc]350 700 1050 R ring 700 pc L SB 1011 L M dyn 1. 8 10 10 M r disk / R ring 0.5-0.65

3/18 100pc Seyfert 2 > Seyfert 1 e.g. Heckman et al. 1989 log ( ) - - 100pc Imanishi & Wada 2004 log (AGN power) - - e.g. Wada & Norman 2002 Umemura, Fukue & Mineshige 1997, 1998 Ohsuga et al. 1998

13/14 NGC 7469 Mazzarella et al. 1994

12/13 Kohno et al. 2003 clearly edge gradually change [pc]350 700 1050 critical density: HCN(1-0) >> CO(1-0)

13/18 Petrucci et al. 04; Davies et al. 04 Moorwood et al. 96 Nemmen et al. 04; 06 Ho et al. 99; Pellegrini 06 Collier et al. 98; Wandel et al. 99 M_bulge-M_BH relation Lewis & Eradeous 06 Pellegrini 05; Dong 06 Γ AGN = L AGN bol AGN L Edd AGN = 4πcGM BHm p L Edd σ T

14/18 SB- AGN Γ AGN = L AGN bol AGN L Edd AGN = 4πcGM BHm p L Edd σ T log Γ AGN = 0.23 ~ 1.3 Γ AGN = (5.6 ~ 7.9) 10 5 Γ AGN = 0.08 Γ AGN = (0.39 ~ 4.1) 10 6 Γ= L SB LEdd r disk / R ring

AGN AGN SB AGN Nuclear starburst AGN