Baker and Schubert (1998) NOTE 1 Baker and Schubert(1998) 1 (subsolar point) 177.4, ( 1). Sp dig subsolar point equator 2.7 dig Np Sun V

Similar documents

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

第86回日本感染症学会総会学術集会後抄録(I)

( ) ,

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

sec13.dvi

GJG160842_O.QXD

all.dvi

TOP URL 1

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

Microsoft Word - 11問題表紙(選択).docx

Untitled

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

The Physics of Atmospheres CAPTER :

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

nsg02-13/ky045059301600033210

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

ohpmain.dvi

201711grade1ouyou.pdf

Part () () Γ Part ,

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco



meiji_resume_1.PDF

KENZOU Karman) x

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

untitled

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

KENZOU

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

Z: Q: R: C: sin 6 5 ζ a, b

Note.tex 2008/09/19( )

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

A

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

LLG-R8.Nisus.pdf

gr09.dvi

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x


1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

SO(2)

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c

~nabe/lecture/index.html 2

chap9.dvi

TOP URL 1

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

QMII_10.dvi

2011de.dvi

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1


Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

: , 2.0, 3.0, 2.0, (%) ( 2.

量子力学 問題

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz



1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

( )

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

chap10.dvi

II 2 II

TOP URL 1

OHP.dvi

untitled

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

液晶の物理1:連続体理論(弾性,粘性)

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

TOP URL 1

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

中央大学セミナー.ppt

高知工科大学電子 光システム工学科

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,


genron-3


kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

Transcription:

Baker and Schubert (1998) NOTE 1 Baker and Schubert(1998) 1 (subsolar point) 177.4, 2.7 2.7 ( 1). Sp 177.3 dig subsolar point equator 2.7 dig Np Sun Venus 1:. 2 (Rayleigh number), ρ u i t + ρu u i j = p + x j x i x i { ( ui µ + u j x j 2 )} u k δ ij ρge z. (1) x i 3 x k u i x j = 0 (2)

Baker and Schubert (1998) NOTE 2 (1) (2) u i t + u u i j = 1 p ν 2 u i ge z. (3) x j ρ x i, ν = µ/ρ. ( )., ρ ρ 0 ρ (x, y, z, t)., p ρ 0 p 0, p (x, y, z, t)., (3) 2, 3, 1 ρ ge z = 1 p 0 + p ρ 0 + ρ x i ρ = ρ 0 + ρ, (4) p = p 0 + p. (5) = 1 ρ 0 p 0 x i + ρ ρ 2 0 ge z p 0 x i 1 ρ 0 p x i ge s.,, p 0 x i = ρ 0 ge s (6).,, 1 ρ ge z = ge z 1 ρ 0 p x i ρ ρ 0 ge s ge z = 1 ρ 0 p x i ρ ρ 0 ge z u i t = 1 ρ 0 p x i ρ ρ 0 ge z + ν 2 u i. (7)

Baker and Schubert (1998) NOTE 3 (16). x = d x, t = d2 ν t, u = L τ ũ = d d 2 /ν ũ = ν dũ, p = ρ 0 U 2 ν 2 = ρ 0 d, 2 T = Γd T. (8),. d, L, Γ., (16),, ν ν ũ i d 2 d t = αt ge z ρ 0 ν 2 p + ν2 ρ 0 d 3 x i d 2 ũ 3 i = αγd T e z ν2 p + ν2 d 3 x i d 2 ũ 3 i ũ i t = αγgd4 T ez p + ν 2 x 2 ũ i i,., = Ra P r T e z p x i + 2 ũ i. (9) Ra = αγgd4 νκ, (10) P r = ν (11) κ, (Rayleigh number) (Prandtl number)... ( ),.,..

Baker and Schubert (1998) NOTE 4, T t + v T = κ 2 T (12),,, 2 T = 0. z,, A, B,, Γ,. T = Az + B. T = T 1 T 2 z + T 2. d Γ = dt dz = T 1 T 2 d = const.. C. q, T. C V, S, [ ] = [ ]., ρc p T dv = t V = S V q ds div q dv.

Baker and Schubert (1998) NOTE 5,., c p, ρ., 1 ) q = k T, ρc p T dv = k 2 T dv. t V V, T t = k ρc p 2 T = κ 2 T.,,. κ = k ρc p V (T, p)., ( ) ( ) V V V = T + P T p p T, V V = 1 V ( ) V T + 1 T p V ( ) V P p T. 2. α, α = 1 ( ) V V T p = 1 R V p = 1 T. 1 ),,, (q), (dt/dx) (S)., q = ks dt dx., S = 1.

Baker and Schubert (1998) NOTE 6 BS1998 (maximam internally heated Rayligh numbers)., (10),.,, (10), T = Γd. T = q 0d k. Γd = dq 0 ρ 0 c p κ. Ra q = gq 0d 4 T 0 ρ 0 c p νκ 2. BS1998, Ra q = gq 0d 5 T 0 ρ 0 c p νκ 2 (13)., (13) q 0,., BS1998 d 7 km Ra q., Ra q,, 100% 6.8 10 6. 2 ). 2 ),.. ν = κ m κ = κ θ

Baker and Schubert (1998) NOTE 7 g 8.87 m s 2 R 191.4 J kg 1 K 1 c p 891 J kg 1 K 1 κ m 155 m 2 s 1 κ θ 155 m 2 s 1 d 20.0 km ρ 0 0.4291 kg m 3 T 0 268 K q 0 (60%) 1.06 10 2 W m 3 (80%) 1.40 10 2 W m 3 (100%) 1.76 10 2 W m 3 P r 1.00 γ 1.27 C g 3.46 3.42 10 5 C k C q 9.12 10 6 1.21 10 5 1.52 10 5,, 100%,,. Ra q = gq 0d 5 T 0 ρ 0 c p νκ 2 8.87 1.76 10 2 7000 5 = 268 0.4291 891 155 2 155 = 6.8 10 6,. ( )..

Baker and Schubert (1998) NOTE 8 ν κ m κ κ θ ν u i u i x u j = κ ū i m j x j κ θ θ x u j = κ θ θ j x j, ( ).,.. θ z. z w, z. z, ( θ + θ w ) = θ w (14).,., w., l., l /2 3 ). l /2, θ l d θ 2 dz,, ] [ θ(z) l d θ w 2 dz.,, ] [ θ(z) + l d θ w 2 dz., z,, 3 ). θ w = l d θ dz w l d θ w 2 dz

Baker and Schubert (1998) NOTE 9. θ w, l w 2. κ θ l w 2. x ρu z ρu w, ρu w ρl dū w 2 dz, κ m l w 2., ū ± l dū/dz, ū u, u 2 w 2, u 2 w 2 l dū dz., ρu w = ρl 2 dū dū dz dz..

Baker and Schubert (1998) NOTE 10 Mariner10, PioneerVenus, Gallileo, 60 70 km 200 1000 km (Belton et al. 1976, 1991; Rossow et al. 1980; Covey and Schubert 1981; Baker and Schubert 1992; Murray et al. 1974; Toigo et al. 1994). 2. 2: (Baker and Schubert 1992). Mariner10, Magellan Mariner10 (Howard et al. 1974) Magellan (Jenkins et al. 1994) 4 ), 45 55 km, 50 55 km. Pioneer Venus Pioneer, 18 30 km, 48 55 km (Seiff et al. 1980). Vega (Young et al. 1987). Vega 48 55 km 1 3 km s 1 (Linkin et al. 1986). 4 ),,..

Baker and Schubert (1998) NOTE 11 3: Vega1 (Linkin et al. 1992)., (A), (B), (C), (D). ( / ) 10 2, 1 (Agee 1987). 2 (Tritton 1975).,. Tritton.

Baker and Schubert (1998) NOTE 12, 100 (Covey and Schubert 1981)., wave-convection (Baker and Schubert 1992). 60km convective layer If a convection occures only in this layer, the aspecto ratio is about 100. 45km 30km 18km static layer (In this layer, only wave can propagate.) convective layer wave If a convection occures in whole reasion, the aspecto ratio is about 10, then it seems to be Earth-like ratio. 4:. 100.,, 10,. (Schubert 1983; Schubert and Walterscheid 1984; Schinder et al. 1990; Baker and Schubert 1992; Seiff et al. 1992; Leroy 1994; Leroy and Ingersoll 1995, 1996). Pioneer (Seiff et al. 1980) Magellan (Jenkins etal. 1994; Hinson and Jenkins 1995)..,.,.

Baker and Schubert (1998) NOTE 13 5 )., 2. Baker and Schubert 1998 2,., 3., 100%, 80%, 60%., 2. u, w, ρ, θ., d, ρ 0, T 0, q 0, d/(rt 0 ) 1/2,. R, 60 km. ρ t = ρu i, (15) x i ρu i = (ρu t x iu j + p δ ij σc k τ ij) C g ρ δ i3, (16) j θ t = [( θ + θ )u x i] + ( θ + θ ) u i + C ) k (ρκ θ i x i ρ x i x i + γ 1 σc k γ ρ τ u ij j + C q x i ρ Q. (17), u i x i, p, ρ, θ, t, κ, Q, τ ij. τ ij, ( ) u τ ij = ρκ i + u j x j x i., (18) p = (ρθ) γ (19). 5 ),,,.

Baker and Schubert (1998) NOTE 14,. x = dˆx (20) t = d ˆt RT0 (21) u = x τ û = RT 0 û (22) p = ρu 2ˆp = ρrt 0ˆp (23) ˆ., ( ) d. (19) ρ, p ρ = γ(ρθ)γ 1 θ. = γrt 0, T 0 c 2 s = p ρ = γrt 0. γ 1, d τ τ = d RT0.,, ρ = ρ + ρ, ρ t + (ρu) = 0 (24) ρ t = ρu i x i (25).

Baker and Schubert (1998) NOTE 15, u i t + u u i j = 1 p + 1 [ ( ui ρκ + u )] j gδ i3 x j ρ x i ρ x j x j x i = 1 p + 1 (τ ij ) gδ i3 (26) ρ x i ρ x j, ( ui τ ij = ρκ + u ) j. (27) x j x i (26) ρ+ (25) u i ρu i t + (ρu i u j ) = p + (τ ij ) ρgδ i3 (28) x j x i x j, ρu i t = x i (ρu i u j + pδ ij τ ij ) ρgδ i3 (29). (29), ρu i t = ( ) ρu x i u j + p δ ij τ ij ρ gδ i3 i 6 )., ( ρ 0 RT 0 ˆρû i = 1 ρ 0 ˆρRT 0 û i û j + ρ 0 RT 0ˆp δ ij ρ ) 0κ m RT0 τ ij ρ 0 ˆρ gδ i3. d ˆt d ˆx i d,, ˆρû i ˆt ( ) = ˆρû i û j + ˆp δ ij κ m ˆx i d τ ij RT 0 dg RT 0 ˆρ δ i3. σ = κ m κ θ κ θ C k = d RT 0 C g = dg RT 0, ˆ (16). 6 ),.

Baker and Schubert (1998) NOTE 16, 7 )., (24), c p dθ dt = θ T Q (30) c p ( t (ρθ) + (ρθu) ) = θ T Q. 8 ) ( ) c p t (ρ θ) + (ρ θū + ρθ u ) = θ T Q., ( ) c p t (ρ θ) + (ρ θū) = θ T Q c p ρθ u., θ u i κ, θ u i = κ θ x i. (2) (24),, ( θ c p t + ū θ ) j = 1 [ ( ρ θ x j ρ T Q c p ρκ θ )] x j x j (31)., θ θ. θ θ = θ + θ, (31), ( ) θ c p t + u j ( θ + θ ) = 1 [ ) c p (ρκ θ + ρθ ] x j ρ x j x i T Q. 7 ) GFD 2011,. 8 ).,,. ā = 0, a + b = ā + b, a b = ā b, ab = a b, ab = ā b + a b.

Baker and Schubert (1998) NOTE 17,., ρθ T Q = τ ij u i + Q. x j, Q.,. ( ) θ c p t + u j ( θ θ ) = 1 [ ) ] c p (ρκ θ + τ u i ij + Q. (32) x j ρ x j x i x j, Q. (32),,,. T 0 RT0 d θ t = [( θ + θ )u x i] + ( θ + θ ) u i i x i + 1 ) (ρκ θ + 1 ρ x i x i c p ρ τ u ij j + 1 x j c p ρ Q. ˆθ t = 1 d T 0 RT0 [(ˆ θ + ˆθ x )û i ] + T 0 ( i + κ θt 0 1 ˆρˆκ ˆθ ) + κ mrt 0 d 2 ˆρ ˆx i ˆx i ˆθ t = [(ˆ θ + ˆθ x )û i ] + (ˆ θ + ˆθ ) û i i ˆx i ( + κ θ d 1 RT 0 ˆρ ˆx i ˆρˆκ ˆθ ˆx i RT0 d 1 d 2 c p ˆρ ˆ τ ij û j ) + κ m RT0 1 τ dc p T 0 ˆρ ˆ ij û j + ˆx i γ = c p c v C q = dq 0 ρ 0 c p T 0 RT0, ˆ (17) 9 ). 9 ), c p c v = R. R = γ 1 c p γ (ˆ θ + ˆθ ) û i ˆx i ˆx i + q 0 c p ρ 0 1 ˆρ ˆQ. dq 0 1 ρ 0 c p T 0 RT0 ˆρ ˆQ

Baker and Schubert (1998) NOTE 18 σ 10 ). γ. C g d, d. C k. C q. (15), (16), (17). 2.,, -,. 10 ), τ A t = A κ 2 x 2 τ = L2 κ. L. τ θ, τ m,,, σ = κ m κ θ = τ θ τ m.,.,,,.

Baker and Schubert (1998) NOTE 19 2.. (Asselin 1972). 0.02 11 ).. ( ) ( ) (z zl ) 2 (z zu ) 2 Q sub (z) = c L exp + c U exp 2σ 2 L 2σ 2 U (33), c L = 3.6 10 3 Wm 3 z L = 27km σ L = 13km c U = 2.7 10 2 Wm 3 z U = 67km σ U = 7.5km, z. Tomasko 1985,, Hou and Goody 1989 ( 5).. 11 ) GFD.

Baker and Schubert (1998) NOTE 20 5: (33) ( ). + Pioneer Venus (Tomasko et al. 1985), Hou and Goody (1989). g 8.87 m s 2 R 191.4 J kg 1 K 1 c p 891 J kg 1 K 1 κ m 155 m 2 s 1 κ θ 155 m 2 s 1 d 20.0 km ρ 0 0.4291 kg m 3 T 0 268 K q 0 (60%) 1.06 10 2 W m 3 (80%) 1.40 10 2 W m 3 (100%) 1.76 10 2 W m 3 P r 1.00 γ 1.27 C g 3.46 3.42 10 5 C k C q 9.12 10 6 1.21 10 5 1.52 10 5

Baker and Schubert (1998) NOTE 21 g, R, c p, κ m, κ θ 60 km. c p 350 K, 50 km (Seiff 1983). 40 60 km, 180 km. 168, 1000.,..,., 5 km. 80%,. 60%, 100% 80%., CFL 0.125 s. 60%, 100%, 15.6, 26.0. 80% 50.,,. 6 100% θ. 6,. 15 30 km, 1 2 km..,,.

Baker and Schubert (1998) NOTE 22 6: 100%. 40 47 km, 47 56 km, 56 60 km. 43 47 km. d dz (F c + F e + F k + F p + F v + F q ) (W b W p ) = 0. (34) F c, F e, F k, F p, F v, F q, W b, W p., (34),.

Baker and Schubert (1998) NOTE 23,. F c =< ρθ > (35) F e = C k ρκ dθ (36) dz F k = 1 (γ 1) < ρu 2 γ iu iw > (37) (γ 1) F p = < p w > γ (38) (γ 1) F v = σc k < u γ iτ iz > (39) F q = C q < F Q > (40) (γ 1) W b = C g < ρ w > (41) γ (γ 1) W p = p u j (42) γ x j, <>,. z, w., F Q Q..,,. d dz (F k + F p ) (W b + W p W v ) = 0. (43), W v,. W v = (γ 1) γ τ ij σc k u i x j (44)

Baker and Schubert (1998) NOTE 24 4: 7:. a) 60%, b) 80%, c) 100%. 7.,., 60%, 80%, 100% 115, 117, 126. 45. 100% 8.16 J m 3, (Emanuel 1994). 38.5 J m 3, 12 ). 12 ) [1] p217.

Baker and Schubert (1998) NOTE 25 5: 54 km 8: 54 km. (a) t = 15.0 h 60% (b) t = 24.1 h 80%, (b) t = 13.8 h 100%.. 54 km. 1 3 km s 1 (Linkin et al. 1986). 3. (km s 1 ) (km s 1 ) 60% 2 5 5.9 80% 4 6 7.1 100% 5 7 7.3

Baker and Schubert (1998) NOTE 26,.,,. 6: 100% 9: 100%. (a), (b). F c ( ), F e ( ), F k ( ), F p ( ), F v (2 ), F q ( ). F q F c. F c, 13 ). 13 ) [1]p.156.

Baker and Schubert (1998) NOTE 27 w = ( ) 1/3 Fs gl (45) ρc p T. l = 7 km, 51.5 km, F s = 216 W m 2, ρ = 1.29 kg m 3,T = 335 K, 100% 3.27 m s 1.,.. 100% 4 14 km s 1, 10 m s 1. 3..,,.,., 7 km, 7.2 km.,,., 10.,.,,.

Baker and Schubert (1998) NOTE 28 10: 100%,,. (43),,,,.

Baker and Schubert (1998) NOTE 29 11, 12 100% 5. 12.4. 11: 100%. 20 km < x < 70 km, 12.4.

Baker and Schubert (1998) NOTE 30 12: 8.

Baker and Schubert (1998) NOTE 31 11(a) 11(b) 12(c) 12(d, e) t = 21.4, x = 36 km z = 47 km 12, z = 44 km. (x = 41 km, z = 46 km )., 45 km. 4 K. 12, 43 km..,.., x = 35 km. 12 ( 12(d)),, ( 12(e))., 40. 13:,. ( ), 60% ( ), 80% ( ), 100% (2 ). 13,,.,

Baker and Schubert (1998) NOTE 32. 3, 43.2 km, 43.1 km 42.7 km. 16.,. 14: 100% F c.,. 2500 W 2 m 4 Hz 1. 4.4 10 4 W 2 m 4 Hz 1., -. 14, F c., F c 30, 46, 105., F c 11, 13, 16, 105.

Baker and Schubert (1998) NOTE 33 11, 12,. 1 2 km s 1. 42 km, 5 30 km. 40 km. 10 m s 1,., 0.5 1 m s 1., 58 km 10 25 km. 40, 60 km,.. 5 km.,,., 40 km,.,,.,. 15

Baker and Schubert (1998) NOTE 34 15: 52 km.. ( ), ( ). 2.5. 52 km. 15 30 km.,.

Baker and Schubert (1998) NOTE 35 [1], 1984:,, 305pp