Similar documents
4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

QMI_10.dvi

QMI_09.dvi

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

QMI13a.dvi


V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

TOP URL 1

( ) ( )

Z: Q: R: C: sin 6 5 ζ a, b

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

第1章 微分方程式と近似解法

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

70 : 20 : A B (20 ) (30 ) 50 1

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

30

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

December 28, 2018


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b)

all.dvi

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

QMII_10.dvi

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Untitled

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1


DVIOUT-fujin

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x


() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

201711grade1ouyou.pdf

TOP URL 1

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

Korteweg-de Vries

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

IA

( )

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

Xray.dvi

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

SFGÇÃÉXÉyÉNÉgÉãå`.pdf


N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

量子力学 問題

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

eto-vol1.dvi

Anderson ( ) Anderson / 14

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

Maxwell

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +


Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π)


i

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)


meiji_resume_1.PDF

tnbp59-21_Web:P2/ky132379509610002944

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

DVIOUT

Z: Q: R: C:

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

Transcription:

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36

1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ n (b), E n = 1 2 { (n + 1)π L } 2 2/36

3/36 K (a, b; T ) = + = 1 2πiT L n= {e i 2T (a b+2nl)2 e i 2T (a+b 2nL)2} x x dx = 1, 0 = exp i N (x j x j 1 ) 2 2 t j=1

4/36 1 2πi t n= {e i 2 t (x j x j 1 +2nL) 2 e i 2 t (x j +x j 1 2nL) 2} Feynman Schrödinger Feynman Schrödinger

2 Chebyshev 2 ψ n (x) = L Chebyshev 1 1 sin (n + 1)π x L =ψ 0 (x)u n (η(x)), η(x) = cos π x L U n (η) = sin(n + 1)θ sinθ, θ = π x L U m (η)u n (η) 1 η 2 dη = π 2 δ m n 5/36

6/36 ηu n (η) = 1 2 U n+1(η) + 1 2 U n 1(η) Hamiltonian H = 1 2m 2 x = RD2 η, R = 1 ( π ) 2, Dη = 1 η 2 L 2 η Hamiltonian E 0 = R E 0 = 0, H H = H R H = R ( D η η 1 η 2 )( D η η 1 η 2 )

7/36 (Odake-Sasaki) [H, [H, η]] = ηr 0 (H) + [H, η]r 1 (H), R 0 (H) = R(4H + 3R), R 1 (H) = 2R η (sinusoidal) η e iht ηe iht = a (+) e iα +(H)t + a ( ) e iα (H)t α ± (H) = 1 2 { } R 1 (H) ± R1 2(H) + 4R 0(H)

8/36 a (±) = {±[H, η] ηα (H)} 1 α + (H) α (H) a (+) ψ n = A n ψ n+1, a ( ) ψ n = C n ψ n 1 ( B n = 0) η ψ n = A n ψ n+1 + B n ψ n + C n ψ n 1, C n = A n 1 B n

Hamiltonian SUSYQM Schrödinger Odake-Sasaki Heisenberg 9/36

10/36 3 Schrödinger SUSYQM ψ 0,+ (x;a) = e W (x;a) A(a) = 1 2 ( x + W (x;a) ), A(a)ψ 0,+ (x;a) = 0 Hamiltonian(H + (a)ψ 0,+ (x;a) = 0 : E 0 (a) = 0) H + (a) = A (a)a(a), H (a) = A(a)A (a) H + ψ E,+ (x) = Eψ E,+ (x), H ψ E, (x) = Eψ E, (x) Aψ E,+ (x) = E ψ E, (x), A ψ E, (x) = E ψ E,+ (x)

A(a)ψ 0,+ (x;a) = 0 11/36 A(a)A (a) = A (a 1 )A(a 1 ) + R(a 1 ), a 1 = f (a) H + (a) ψ n,+ (x;a) = A (a)a (a 1 )... A (a n 1 ) En (a)e n 1 (a 1 ) E 1 (a n 1 ) ψ 0,+(x;a n ), E n (a) = n k=1 R(a k ), a n = f (a n 1 ), a 0 = a, n = 1, 2, 3,... A(a)

12/36 A(a)ψ λ (x;a) = λψ λ (x;a) = ψ λ (x;a) ψ 0,+ (x;a)e 2λx ψ ik/ 2 (x;a)ψ ik/ 2 (x ;a)dk δ(x x ) ψλ (x;a)ψ λ (x;a)dx =?

13/36 4 Path-integral solutions for shape-invariant potentials using point canonical transformations R. De, R. Dutt and U.Sukhatme, Phys. Rev, A 46, 6869 (1992) V (r,θ) = c2 1/4 2r 2 sin 2 θ + d2 1/4 2r 2 cos 2 θ Energy-dependent Green s function Duru-Kleinert formalism

Path integration of one-dimensional three-body problem with three-body forces D. C. Khandekar and S. V. Lawande, J. Math. Phys. 18, 712 (1977) Duru-Kleinert point canonical transformations(pct) Supersymmetry and Quantum Mechanics F. Cooper, A. Khare and U. Sukhatme, Phys. Rep. 251, 267 (1995) 14/36

15/36 5 Heisenberg Hψ n (x) = E n ψ n (x), E 0 (= 0) < E 1 < E 2 < ψ n (x) = ψ 0 (x)p n (η(x)) [ ψ n (x)ψ n (x)dx = δ n,n ] P n (η) η n {P n (η) n = 0, 1, 2,...} P 1 (η) = 0 ηψ n = A n ψ n+1 + B n ψ n + A n 1 ψ n 1

(sinusoidal coordinate) η(x) [H, [H, η]] = ηr 0 (H) + [H, η]r 1 (H) + R 1 (H) Heisenberg operator e iht ηe iht = a (+) e iα +(H)t + a ( ) e iα (H)t R 1(H) R 0 (H), α ± (H) = 1 2 { } R 1 (H) ± R1 2(H) + 4R 0(H), a (±) = { ( ±[H, η] η + R ) } 1(H) α (H) R 0 (H) 16/36 1 α + (H) α (H).

17/36 e iht η ψ n e ie nt =A n ψ n+1 e i(e n+1 E n )t + B n ψ n + A n 1 ψ n 1 e i(e n 1 E n )t e iht η ψ n e ie nt =a (+) ψ n e iα +(E n )t + a ( ) ψ n e iα (E n )t ψ n R 1(E n ) R 0 (E n ) a (+) ψ n = A n ψ n+1, a ( ) ψ n = A n 1 ψ n 1, B n = R 1(E n ) R 0 (E n )

18/36 E n+1 E n = α + (E n ), E n 1 E n = α (E n ), α ± (E n ) = 1 2 { } R 1 (E n ) ± R1 2(E n) + 4R 0 (E n ), ψ n = a(+) A n 1 ψ n 1 = 1 {a (+) } n ψ 0. n 1 A k k=0

19/36 a ( ) a ( ) ψ n = A n 1 ψ n 1 a ( ) α = α α = α = α α = (α α ) n n 1 k=0 A 2 k α n n 1 k=0 A k ψ n,

20/36 w(α α) 0 w(u)u n du = n 1 k=0 A 2 k dα dα π w(α α) α α = 1 but... α H α =?

21/36 6 1. 2. ( ) = ( ) 3. H ( )( ) η a (±) 1 2 3 a = a ( ) f (H), a = f (H)a (+)

22/36 a a ψ n = { f (E n )} 2 A 2 n 1 ψ n { f (E n )} 2 A 2 n 1 = E n a a ψ n = E n ψ n = H = a a a α = α α = α H α = α α α α

23/36 α = c n ψ n = a α = c n A n 1 f (E n ) ψ n 1 n=1 α α = α c n ψ n c n = γ n = α c n 1 = f (E n )A n 1 n { f (E k )A k 1 } 2 = k=1 αn γn, n k=1 E k

α = α n γn ψ n, γ n = n k=1 E k 1. E k = k = γ n = n! α = α n n! ψ n α α = e α α dα dα π w(α α) α α = 1, 24/36 w(α α) = e α α

2. E k = k 2 + νk = γ n = n!γ (n + ν + 1)/Γ (ν + 1) α = α n n!γ (n + ν + 1)/Γ (ν + 1) ψ n α α = Γ (ν + 1)(α α ) n n!γ (n + ν + 1) = 0 F 1 (ν + 1, α α ) = Γ (ν + 1) (α α ) ν/2 I ν(2 α α ) w(α α)? = (α α) ν/2 Γ (ν + 1)I ν (2 α α ) 25/36

w(α α) dα dα π w(α α) α α = 1 α = u e iθ dα dα π = du dθ 2π dα dα π w(α α) α α = 0 0 du w(u) du w(u)u n = γ n 26/36 u n γ n ψ n ψ n

27/36 γ n = n!γ (n + ν + 1) Γ (ν + 1) n!γ (n + ν + 1) = =Γ (ν + 1) w(u) = 0 0 du w(u)u n 1 Γ (ν + 1) 0 ds dt e s t s n t n+ν [st = u ] e (t+t/u) t ν 1 = 2uν/2 Γ (ν + 1) K ν(2 u )

28/36 E n = n(n + ν) w(u) = 2uν/2 Γ (ν + 1) K ν(2 u ) dα dα π w(α α) α α = 1

29/36 dα dα w(α α) α α α α π dα dα 2(α α) ν/2 = π Γ (ν + 1) K ν(2 α α ) Γ (ν + 1) (α α) ν/2 I ν(2 α Γ (ν + 1) α ) (α α ) ν/2 I ν(2 α α ) Γ (ν + 1) = (α α ) ν/2 I ν(2 α α ) = α α

7 a ( ) a = a ( ) f (H) α α = α n γn ψ n, γ n = n k=1 E k ψ n = {a(+) } n ψ 0 = n A k 1 k=1 α = (a ) n γn ψ 0, a = f (H)a (+) (a α) n 30/36 γ n ψ 0

31/36 Schrödinger 1. E n = n α = e a α ψ 0 2. E n = n(n + ν) α = 0 F 1 (ν + 1, a α) ψ 0 dα dα π w(α α) α α = 1

32/36 α F e βh α I = N 1 i=1 dα i dα i π w(α i α i) N α j e ϵh α j 1, j=1 ϵ = β N, α N = α F, α 0 = α I α j e ϵh α j 1 = α j α j 1 (1 ϵα j α j 1 + O(ϵ 2 )) α j α j 1 (1 ϵα j α j 1) = e (1 ϵ)α j α j 1 = e e ϵ α j α j 1

33/36 α j α j 1 (1 ϵα j α j 1) (α j = α j 1) n (1 ϵα j α j 1) = [ = γ n (α j α j 1) n γ n ( 1 γ ) n ϵ γ n 1 (e ϵ α j α j 1) n n! ( ) ]

34/36 = = dαj dα j 0 π du w(u) w(α j α j) α j+1 (1 ϵh) α j α j (1 ϵh) α j 1 (α j+1 α j 1) n γ n (α j+1 α j 1) n u n γ 2 n ( 1 γ n γ n 1 ϵ α F (1 ϵh) N α I = ) 2 ( 1 γ ) 2 n ϵ γ n 1 (α N α 0) n γ n ( 1 γ ) N n ϵ γ n 1

35/36 ( lim 1 γ ) N n ϵ = e β γ n γ n 1 N γ n 1 lim α F (1 ϵh) N α I = N (α F α I) n γ n e βe n γ n = n k=1 E k = γ n γ n 1 = E n

36/36 8 Schrödinger Heisenberg Duru-Kleinert