磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

Similar documents
¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤®

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3


V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

30

( ) ) AGD 2) 7) 1

多体問題

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

PDF

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

Note.tex 2008/09/19( )

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

19 /

TOP URL 1

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析


本文/目次(裏白)

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

4 1 Ampère 4 2 Ampere 31

4/15 No.

nsg02-13/ky045059301600033210

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

201711grade1ouyou.pdf

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

総研大恒星進化概要.dvi


( )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

02-量子力学の復習

The Physics of Atmospheres CAPTER :

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

meiji_resume_1.PDF

I

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

第10章 アイソパラメトリック要素

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

基礎数学I


( ) URL: December 2, 2003

: , 2.0, 3.0, 2.0, (%) ( 2.

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

keisoku01.dvi

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

prime number theorem

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

数学の基礎訓練I

( ) I( ) TA: ( M2)

IA

36 th IChO : - 3 ( ) , G O O D L U C K final 1

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

1 2 2 (Dielecrics) Maxwell ( ) D H

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

QMI_10.dvi

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

プログラム

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

all.dvi

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

SPring-8_seminar_

global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, ( 03) N. P. A722, 117c ( 03) Proc. of NENS03 (to be

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

H.Haken Synergetics 2nd (1978)

薄膜結晶成長の基礎2.dvi

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

Chadwick [ 1 ] 1919,, electron number Q kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e =

note4.dvi


1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

untitled

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

tnbp59-21_Web:P2/ky132379509610002944

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Transcription:

email: takahash@sci.u-hyogo.ac.jp April 30, 2009

Outline 1. 2. 3. 4. 5. 6. 2 / 260

Today s Lecture: Itinerant Magnetism 60 / 260

Multiplets of Single Atom System HC HSO : L = i l i, S = i s i, J = L + S H SO : L, S, S 2, L 2 = E(L,S), (2L + 1)(2S + 1) H SO ( ) : J, J 2, S 2, L 2 = E(J,L,S), (2J + 1) 61 / 260

Magnetism of Atoms ( ) Hund S ( l 1 ) L J 62 / 260

Origin of the Hund s Rule 2 φ a, φ b 2 2 Ψ S (r 1,r 2 ) = 1 2 [φ a (r 1 )φ b (r 2 ) + φ b (r 1 )φ a (r 2 )], (S = 0) Ψ A (r 1,r 2 ) = 1 2 [φ a (r 1 )φ b (r 2 ) φ b (r 1 )φ a (r 2 )], (S = 1) Ψ A r 1 r 2 ( S = 1, S = 0) 63 / 260

Magnetic Ions in Crystals 1. : ( ) 2. Hund 3. 64 / 260

Magnitudes of Various Interactions ( 1 cm 1 = 1.4388 K) 3d 4f 5f 10 4 10 5 10 4 10 5 10 4 10 5 10 2 10 3 10 3 3 10 3 10 4 10 10 2 10 2 10 3 d: 4f: 5f: 65 / 260

Physical Units in Magnetism M : µb H : MH χ : M = χh µ B p = M/N A µ B [ ] h = 2µB H [ ] χ = χ/(na µ 2 B ) [ ] 66 / 260

Stoner-Wohlfarth Theory Stoner (1938) Wohlfarth (1951) Band : Stoner (T = 0) 67 / 260

Magnetic Susceptibility of Simple Metals : χ ρ(εf ) 1 10 4 [K 1 ] E F : EF k B T 1 : χ J : J kb T c k B T 68 / 260

Heitler-London Model Chemical Bonding of a Hydrogen Molecule 2 e +e +e e H = H 1 + H 2 + V H 1 = 1 e 2 2m p2 1 r 1 R e 2 a r 1 R b, H 2 = 1 e 2 2m p2 2 r 2 R e 2 a r 2 R b V = e 2 r 1 r 2 69 / 260

Quantum Mechanics of Many Particle Systems ( ) Ψ(r,r ) = Ψ(r,r) Slater 2 : c νσ, c νσ c µσc + c c νσ νσ µσ = δ µνδ σσ Slater 2 ˆΨ(r) = P νσ 70 / 260 0 Ψ(r)Ψ(r )c β c α 0 = φ α(r)φ β (r ) φ β (r)φ α(r ) φν(r)cνσ: ( r )

Reference: Second Quantization 1 φ α A B n α = 1 n β = 1 φ β φ α A φ β B = φ α, φ β n α = 1, n β = 1 ( ): c α: c β : φ α φ β φ α φ β 71 / 260

Second Quantized Hamiltonian 2 1 Ĥ = Ĥ0 + Ĥ1 Ĥ 0 = [ ] 1 d 3 rψ σ (r) 2m p2 + V(r) Ψ σ (r) σ Ĥ 1 = 1 d 3 r d 3 r Ψ σ 2 (r)ψ σ (r )v(r r )Ψ σ (r )Ψ σ (r) σ,σ Heitler-London V (r) = e2 r R a e2 r R b, v(r r ) = e2 r r 72 / 260

Approximate Hamiltonian 2» 1 2m p2 e2 φ i(r) = ε 0φ i(r), (i = a, b) r R i 6 Slater 4, φ i (r)α, φ i (r)β, 2 : ˆΨ σ (r) φ a (r)c aσ + φ b (r)c bσ Ĥ = [ ] ε 0 (ˆn aσ + ˆn bσ ) + (t ba c bσ c aσ + h.c.) + U[ˆn a ˆn a + ˆn b ˆn b ] σ 2 : 3 : 73 / 260

Limit of Strong Correlation 6 2 S = S 1 + S 2 S = 1 3 (E = 2ε 0 ) c a c b 0, 1 2 (c a c b + c a c b ) 0, c a c b 0 S = 0 1 (E = 2ε 0 + U) 1 2 (c a c a c b c b ) 0 2 1 Ψ 1 = 1 2 (c a c b c a c b ) 0, Ψ 2 = 1 2 (c a c a + c b c b ) 0 74 / 260

Energy Levels in the Limit of Strong Correlation 2 1 Ψ 1, Ψ 2 ĤΨ 1 = 2ε 0 Ψ 1 + 2tΨ 2 ĤΨ 2 = (2ε 0 + U)Ψ 2 + 2tΨ 1 (2ε 0 E)(2ε 0 + U E) 4t 2 = 0 { E = 2ε 0 +U/2± U 2 /4 + 4t 2 2ε0 + U + 4t 2 /U, + 2ε 0 4t 2 /U, 75 / 260

Limit of Weak Correlation U = 0 ( ) c ±σ = 1 (c aσ ± c 2 bσ ) c +σ c +σ = 1 2 (c aσ c aσ + c bσ c bσ + c aσ c bσ + c bσ c aσ) ˆn +σ + ˆn σ = ˆn aσ + ˆn bσ, ˆn +σ ˆn σ = c aσ c bσ + c bσ c aσ Ĥ 0 = σ = σ [ε 0(ˆn +σ + ˆn σ ) + t(ˆn +σ ˆn σ )] [ε +ˆn +σ + ε ˆn σ ], (ε ± = ε 0 ± t) 76 / 260

Energy Schemes in Two Opposite Limits U 2ε 0 + U + E 2ε 0 + U 2t 2(ε 0 t) ε 0 2ε 0 2ε 0 E 2(ε 0 + t) ( E t2 U ) (t < 0 ) 77 / 260

Model of Itinerant Electron Magnetism Hubbard Model: H = kσ = kσ t ij c iσ c jσ + U i ε k c kσ c kσ + U i n i n i M z B, n i n i M z B M z = 2µ B S z, S z = i s z i (2µB ) M = 1 n k n k = N 0 2 2 n n N = k k n k n k = N 0 n + n 78 / 260

Hartree-Fock Approximation U i n i n i = U iσ (n i n + n i n n n ) = U kσ n kσ n σ N 0 U n n H = ( (ε kσ µ)c N 2 ) kσ c kσ I 4 M2, (I = U/N 0 ) kσ ε kσ =ε k + IN/2 σ, = IM + h/2 79 / 260

Free Energy and Thermodynamic Relations F(h,µ,T) = IM 2 + F 0, F 0 = kt kσ ln(1 + e β(ε kσ µ) ) ( ) N(h, µ,t) = F µ = X f (ε kσ ) = X Z dερ(ε)f (ε + σ ) kσ σ M(h, µ,t) = F h = 1 X σf (ε kσ ) 2 kσ = 1 Z dερ(ε)[f (ε + ) f (ε )] 2 ρ(ε) ρ(ε) = X k δ(ε ε k ) 80 / 260

Free Energy as a Function of Magnetization (Legendre ) F(M,N,T) = F(h,µ,T) + hm + µn µ(m,n,t), h(m,n,t) N, M F(M,N, T) N F(M,N, T) M ««F(h, µ,t) µ F(h, µ,t) h = µ + + N µ N + + M h N = µ F(h, µ,t) = h + µ = h ««µ F(h, µ,t) h + N M + + M h M 81 / 260

Free Energy in the Ground State { µ 0 + δµ +, (for Majority Spin) µ 0 = µ 0 + δµ, (for Minority Spin) = IM + h/2 δµ, N = 2M = µ0 +δµ+ µ0 +δµ µ0 ρ(ε)dε + ρ(ε)dε = 2 ρ(ε)dε µ0 +δµ+ µ 0 +δµ dερ(ε) = ρ 0 [(δµ + ) (δµ )] 82 / 260

Free Energy and Equation of State δµ M 2ρ 0 δµ + ρ 0 2 + = 0 ( ρ 2 0 ρ 2 0 = 1 ρ 0 M + 1 2ρ 3 0 ρ 0 3ρ 0 ) M 3 + = IM + h 2 ( ) h 1 2 = I M + 1 ρ 0 F(M,0) = F(0,0) + 2ρ 3 0 ( 1 ρ 0 I ( ρ 2 0 ρ 2 0 ρ 0 3ρ 0 ) M 2 + 1 4ρ 3 0 ) M 3 + ( ρ 2 0 ρ 2 0 ) ρ 0 M 4 + 3ρ 0 83 / 260

Temperature Dependence dερ(ε)f (ε) = µ dερ(ε) + π2 µ0 3 ρ (µ)(kt) 2 + = dερ(ε) ρ 0 δµ(t) + π2 3 ρ 0(kT) 2 +, δµ(t) = π2 ρ 0 (kt) 2 + 3 ρ 0 2M = 2 [ρ(µ 0 + δµ) + π2 = 2 ρ 0 [ 1 π2 3 ( ρ 2 0 ρ 2 0 3 ρ (µ 0 + δµ)(kt) 2 + ) ] (kt) 2 + + ρ 0 ρ 0 ] + O( 3 ) 84 / 260

Reference: Sommerfeld Expansion Sommerfeld f (x) Z dxf (x)g(x) = = Z µ Z µ dxg(x) + X n=1 g n(kt) 2n 2n 1 x 2n 1 G(x) x=µ dxg(x) + π2 6 (kt)2 G (µ) + 7π4 360 (kt)4 G (µ) + g n = (2 2 2(n 1) )ζ(2n) 85 / 260

Stoner-Wohlfarth Free Energy Stoner-Wohlfarth(SW) F(M,T) = F(0, 0) + 1 2 a(t)m2 + 1 4 b(t)m4 + a(t) = 1 ρ I + π2 R 6ρ (kt)2 +, b(t) = F1 2ρ 3 R = ρ 2 /ρ 2 ρ /ρ +, F 1 = ρ 2 /ρ 2 ρ /3ρ H = F M = a(t)m + b(t)m3 + : ρ ε F 86 / 260

Basis of Stoner-Wohlfarth Theory SW E band + E Coulomb 1. ε kσ = ε k σ, = µ B H + IM, (I = U/N) 2. : Fermi Sommerfeld dερ(ε)f (ε) = µ dερ(ε) + n=1 3. (or M) a n (kt) 2n ρ (2n 1) (µ) 87 / 260

Predictions by SW theory Stoner-Wohlfarth (T < T c ) : H = F M = a(t)m + b(t)m3 + : Iρ(εF ) > 1 (Stoner ) T = 0 a(0) < 0 Tc : a(t c ) = 0 [ ] 6(Iρ 1) 1/2 kt c = π 2, a(t) = a(0)(1 T 2 /Tc 2 ) R M0 (T = 0): H = 0 a(0)m + b(0)m 3 = 0 [ ] a(0) 1/2 [ ] 2(Iρ 1) 1/2 M 0 = = ρ T c b(0) 88 / 260 F 1

Origin of Band Splitting 1. E band = + Nm2 ρ(ε F ) : m = 0 m > 0 2. E Coulomb : 89 / 260 E Coulomb = Un n = U(n 2 /4 m 2 ), E Coulomb = Um 2

Band Splitting: Schematic Example : U > ρ(ε F )/N (Stoner ) 90 / 260

Magnetic Isotherm : H = 0 [ ] a(t) 1/2 M(T) = = M 0 [1 T 2 /Tc 2 b(t) ]1/2 M 2 (H,T) = a(t) b(t) + 1 b(t) H M(H,T) M 2 (H,T) = M 2 (0,0)[1 T 2 /Tc 2 ] + M 2 2χ 0 H (0,0) M(H,T) 91 / 260

Characteristic Properties of Itinerant Magnets M/(N 0 µ B ) 1 Arrott T 3/2 T 2 χ(t) CW CW p eff /p s 1 1 Arrott : M 2 H/M 92 / 260 H = a(t)m + b(t)m 3

Experimental - Magnetic Isotherm Arrott Plot: M 2 vs H/M Sc 3 In: Takeuchi, Masuda (1979) ZrZn 2 : Ogawa (1968) 93 / 260

Experimental - Magnetic Moment : T 2 ZrZn 2 : Ogawa (1972) 94 / 260

Rhodes-Wohlfarth Plot T c Pc/Ps 14 (FeCo)Si 12 10 8 6 4 2 Pd-Fe Pd-Co (FeCo)Si Pd-Rh-Fe Sc-In Pd-Ni (FeCo)Si Pd-Ni Pd-Co Pd-Fe Pd-Fe Pd-Fe Pd-Co Ni-Cu Ni-Pd Pd-Cu CoB CrBr 3 EuO Gd MnB MnSb FeB 0 0 200 400 600 800 Tc(K) Ni Fe 1000 p C (p C + 2) = p 2 eff, χ(t) = N 0(gµ B) 2 p 2 eff/3k B(T T c) 95 / 260

Magnetovolume Effect (ω = δv /V ) F(M,T,ω) = V 2κ ω2 + F(0,T,ω) + 1 2 a(t,ω)m2 + 1 4 b(t,ω)m4 a(t,ω) = a(t,0) Cω +, C = 1 a 2 ω ( ) ω = κ V CM2 = κ V CM2 0 (T) + κ V C[M2 M 2 0 (T)] T > T c ω = 0 ( ) 96 / 260

Volume Dependence of Magnetism T c : a(t c,ω) = 0 a T δt c + a ω ω = a (T c,0)δt c 2Cω = 0 δt c = (2Cω)/a (T c,0) (T = 0) : a(0,ω) + b(0,ω)m 2 s = 0 2Cω + 2b(0,ω)M s δm s = 0, M s = M 0 (0) δm s = (Cω)/b(0,ω)M s 97 / 260

Summary: Success of SW Theory Stoner-Wohlfarth Arrott M 2 = a(t) + b H/M M(T) M(0) T 2 4 b(t) b(0) T 2 : M 2 98 / 260

Summary: Difficulties of the Theory (T > Tc ) χ(t) = M(T) H = 2χ 0T 2 c M 2 (0,0) 1 T 2 T 2 c T C 99 / 260