Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

Similar documents
II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

画像工学特論

Microsoft Word - 信号処理3.doc

meiji_resume_1.PDF

QMI_09.dvi

QMI_10.dvi

Untitled

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2


数値計算:有限要素法

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a


) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

Part () () Γ Part ,

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

第1章 微分方程式と近似解法

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

TOP URL 1

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

tokei01.dvi

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>


) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

b3e2003.dvi

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0


W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

Note.tex 2008/09/19( )

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

201711grade1ouyou.pdf

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

総研大恒星進化概要.dvi

高知工科大学電子 光システム工学科

untitled

keisoku01.dvi

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

Microsoft Word - 11問題表紙(選択).docx

A 99% MS-Free Presentation

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

構造と連続体の力学基礎

修士論文

TOP URL 1

撮 影

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

nosenote3.dvi

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

main.dvi

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

統計的データ解析

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


KENZOU Karman) x

The Physics of Atmospheres CAPTER :

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

dynamics-solution2.dvi

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

2011de.dvi

( )

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

sikepuri.dvi

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

QMII_10.dvi

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

LLG-R8.Nisus.pdf

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(


φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

第5章 偏微分方程式の境界値問題

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

4‐E ) キュリー温度を利用した消磁:熱消磁


untitled

II 2 II

gr09.dvi

6.1 (P (P (P (P (P (P (, P (, P.101

Transcription:

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) µ = lim xk( k = autocorrelation function R( t, t + τ) = lim ( ) ( + τ) xk t xk t k = V p o o R p o, o V S M R realization t M --

x,t u u (realization) x( y( y t A(x( u u,u,u 3 x(x,x,x 3 ) t A f ( u, u, u3, x, x, x3, dududu3 u( x, x, x3, = 3 3 3 3 u ( x, x, x, f ( u, u, u, x, x, x, du du du realization u i = ui + ui' g i = i( x, x, x3, g(, x, d = u mean square value ϕ = lim x t dt ( ) rms (static) (dynamic) static variance µ t = lim xk( dt σ = lim x t dt ( ) µ Rt ( t, t + τ ) = lim xk t xk t dt ( ) ( + τ ) x t xx xx {x(} R t x x / {x(} non- stationary R t {x(} weakly stationary x Pr ob[ x < x( < x + x] = lim {x(} x probability density {x(} strongly stationary function p Pr ob[ x < x( < x + x] = p( x (ergodic) x probability distribution function P ( = x p( ξ) dξ µ ( x ) = xp( dx --

ϕ ( ) = x x p( dx f power ( x a) p ( = exp spectral density function G(f) b π b ϕ ( f, f ) = G( f ) f G jπfτ G( f ) = R( τ) e dτ = 4 R( τ) cos(πfτ) dτ / µ = ( ) G + f df o 3 t t+τ avier-stokes u R( t, t + τ) = lim xk t xk t dt ( ) ( + τ) = x R τ= ui ui p ui + uj = + ν j i j j µ = R ( ) ϕ = R() ) ϕ ( f, f ) = lim x t f f (,, skewness : ϕ = G + ( f ) df 3 o Fourier racking Filter A/D Digitize FF (Fast = ( µ ) σ 3 Fourier ransform) S xk 3 k = FF FF Kurtosis 4 FF Window 3 K-3 Hanning Window = ( µ ) σ 4 K xk 4 k = = x ui ui p ui ui' uj' + uj = + ν x t ff+ f t xj ρ xi xj xj xj t x ρ x / x x u i ui + ui avier-stokes u dt -3-

Reynolds R r avier-stokes ui' uj' xj 4 avier-stokes rl (integral scale) ρu i j Reynolds Stress g(r) Reynolds.8 Reynolds Stress. -. 3 4 5 6 r 3. f(r) Integeral scale.8 L.4. () r 4 Rij ( r) = i( j( x + r) R ij Rij( r) = Rij( r) r u i u j Lij = R( r) dr i( j( lim Rij( r) = λ r u i u j ui r= = Rij ( ) = [ i ( j ( x ) λ ij ] / i ( xi r R ij () ˆ i( j( Rij( r) = [ i ( j ( x ) ] / r u i u j 3 r RMS r r -4- Rij Rij..6.4.6 3 4 5 f(r)

u' λ Re λ = ν Re λ 7 8 u' L Re L = ν 7 8 = 5 Reynolds x Uc t U c convection velocity Band-pass Filter Zero- Crossing.8 X X 938 S/ x( x ( t *) = x t + i < t* ( * ), < 5 i= 6 Ejection Sweep Band-pass Filter v Reynolds Bluff Body v x y -5-

u ' < and v' > Ejection u ' > and v' < Sweep Ejection Sweep Ejection/Sweep rip Wire 7 8 Fourier Fourier (Data Reduction) Fourier Windowed Fourier ransformgabor Fourier ransform Fourier chebychev Bessel Fourier Legendre 7 Fourier chebychev -6-

wevlet Wavelet Singular Value Decomposition Singular Spectrum Analysis Proper Orthogonal Decomposition Karhunen-Loeve 9Wevelet AD FF, PC -7-

.5 FF.5 6 64 8 56 5 4 48 Low-Pass, High-Pass, Band-Pass, otch, Cut-off A/D Cut-off A/D khz, Bessel 6 5V 6 65536.5mV A/D Anti-Aliasing Filter Low-pass x( j f X f π τ A/D Digitize ( ) = x( e dt x t jπfτ/ FIR(Finite x( = Ane Impulse Response) IIR(Infinite Impulse Response) n j f X = x t e dt = An -chip DSP π τ / ( ) ( ) t x( f X f X f -BB n B 3. jπnf / B x( ) = X ( f ) e df = BCn B B x n/b f X f B = = B / B /=B R w I U -8-

a khz πd cwgρw w I Rw = + πdh( w a) khz 4 t d c w ρ w khz h l d l/d> 5kHz khz R { + β( w o) } w = Ro d p w Prong Heat accumulated I I x dx Heat generated l Heat Heat conduction in conduction out w Heat to cross-flow I Rw = πdh( w a) E Collis Williams h π dh.45 ( w a) n f = (.4 +.56 Re ) + R R = ( A + BU ) λ a a + - r E Re i λ R R R 3 W L E=IR w U / U = { B ( )} n o E Co n.45.5, B o,c o,n PIV Particle Image Velocimetory PIV LDV CCD 4 5pixel 6 6pixel PIV PIV -9- w Wire element R G

.8mm.5mm 3 mm PIV 4 3 µsec 5 ACA 4.4mm 3 4 IDSX4 m/s 5kHz 8µsec µsec 5 PIV ACA Kulite 6 ch 4 khz khz kpa Kulite 4 PIIV mm 6 --

p.4mm 8 9 4 l d 45 V mm mm 7 5 7 Steel ube φ.6 8 Pressure Holes φ.4 /4inch M Condenser () (34.3) Microphone.5mm 54.8 (.) k µ 8 khz 7 khz.5 ψ=9.5 -. 7 l -.5 V - m=sl -.5 V - -.5.5.5.5 3.5 4.5 5.5 6.5 7.5 X/D 9 fr c = π πd c = 4V ( l +.6d) π S Vl - S V -.5 l - -.5.5.5.5 3.5 4.5 5.5 6.5 7.5 mm DC 8 /4 /s mm --.5.5 -.5 ψ=9 X/D φ 7

PSP) khz khz Collisional quenching O I Io = + K( O) I I o K PSP.5 Pressure ap PSP(Moving Average.5 -.5 - U = 35m/s -.5 α = 5deg - CCD..4.6.8..4 X /D PSP.5 Pressure ap PSP(Moving Average.5 -.5 kpa kpa - U = 75m/s -.5 α = 5deg -..4.6.8..4 X /D 4 4PSP 75m/s PSP 75 /s 35m/s PSP(AA- -- 3 PSPU=75m/s C p C p