[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

Similar documents
1 s 1 H(s 1 ) N s 1, s,, s N H({s 1,, s N }) = N H(s k ) k=1 Z N =Tr {s1,,s N }e βh({s 1,,s N }) =Tr s1 Tr s Tr sn e β P k H(s k) N = Tr sk e βh(s k)

( ) I( ) TA: ( M2)

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

LLG-R8.Nisus.pdf

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

H.Haken Synergetics 2nd (1978)

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

30

日本内科学会雑誌第102巻第4号

all.dvi

本文/目次(裏白)

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

Maxwell

i Γ

Note.tex 2008/09/19( )

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

0201

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤®


講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

201711grade1ouyou.pdf

·«¤ê¤³¤ß·²¤È¥ß¥ì¥Ë¥¢¥àÌäÂê

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s



keisoku01.dvi

抄録/抄録1    (1)V

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

II 1 II 2012 II Gauss-Bonnet II

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

tnbp59-21_Web:P2/ky132379509610002944

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

パーキンソン病治療ガイドライン2002

研修コーナー

数学概論I

I ( ) 2019


δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

meiji_resume_1.PDF

TOP URL 1

2,200 WEB * Ξ ( ) η ( ) DC 1.5 i

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

2011de.dvi

薄膜結晶成長の基礎4.dvi

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

( ) ,

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

untitled

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

TOP URL 1

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

30 (11/04 )

構造と連続体の力学基礎

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

( ) Loewner SLE 13 February

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

pdf

微粒子合成化学・講義

微粒子合成化学・講義

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

QMII_10.dvi

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

References: 3 June 21, 2002 K. Hukushima and H. Kawamura, Phys.Rev.E, 61, R1008 (2000). M. Matsumoto, K. Hukushima,

all.dvi

arxiv: v1(astro-ph.co)

Chap11.dvi

成長機構

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

薄膜結晶成長の基礎2.dvi

chap9.dvi

³ÎΨÏÀ

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

Z: Q: R: C: sin 6 5 ζ a, b

Transcription:

4.2 4.2.1 [ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 z = 6 z = 8 zn/2 1 2 N i z nearest neighbors of i j=1 (4.40) J > 0 4 Ṡi = (i/ h)[h, S i ] 5 55

h H = H 0 + H ext = J zn/2 S i S j h N S i (4.41) i [ ] h = 0 2 (k B T J) (paramagnetism) (ferromagnetism) (spontaneous symmetry breaking) (order parameter) (magnetization) 6 M = i S i. (4.42) 7 1 m = M N = S i (4.43) i F = E T S (4.44) M = 0 8 (k B T J) 6 7 (4.48) 8 m (4.64) 56

M N or m 1 (4.45) (4.74) M = 0 ( ( ) ) M (phase transition) [Ising ] 1 ( ) 2 (Onsager) 3 Ising (4.74) Z(T, h) = n e βe n = 2 N n e βh n n = e βh({s i}) S 1 =±1 S 2 =±1 S N =±1 (4.46) n : n = 2 N (mean field approximation) S i S i δs i = S i S i H 0 = J S i S j 57

= J [(S i S i )(S j S j ) + S i S j + S i S j S i S j ](4.47) δs 2 1 S i = n n S i e βh n n n e βh n (4.48) H 0 H mf = J i n.n. of i S i j S j + 1 2 J i n.n. of i j S i S j = zjm i S i + 1 2 NzJm2 (4.49) Z = e βh eff(s 1 +S 2 + +S N ) e 1 2 βnzjm2 = S 1 =±1 S N =±1 e βh effs 1 e βh effs N e 1 2 βnzjm2 S 1 =±1 S N =±1 = ( ) e βh eff + e βh N eff e 1 2 βnzjm2 = [ e 1 2 βzjm2 2 cosh (βh eff ) ] N (4.50) h eff = h + zjm (4.51) [ 1 F (V, T, h) = N 2 zjm2 1 ] β ln [2 cosh(βh eff)] (4.52) 9 m = 1 N F h = tanh(βh eff) (4.55) 9 h i Z(β, {h i }) = n n e βĥ0 i h i S i n F (β, {h i }) = 1 β ln Z(β, {h i}) (4.53) h i h α i mα i 58

(4.49) m = S i m m = tanh [β(h + zjm)] (4.56) (self-consistency equation) (4.56) h = 0 T c zj k B (4.57) ( ) Tc m = tanh T m (4.58) x = (T c /T )m y = tanh(x) y = (T/T c )x (self-consistent) ( 4.5(a)) = 0 for T > zj/k B, m (4.59) = 0, ±m s (T ) for T < zj/k B T T c x = 0 ( ) T T c 3 m = 0 m = ±m s T c (critical temperature) h = 0 F = N β ln [2 cosh (βzjm s(t ))] + 1 2 znjm s(t ) 2 (4.60) ( h i = h ) m α i = Si α n = n Sα i e β(ĥ0 hi Si) i n h i S n n e β(ĥ0 i i) n = 1 Z (βh α i ) n e β(ĥ0 h i S i i) n = 1 β n (h α i ) ln Z(β, {h i}) (4.55) 1 h i = h = h α F (β, {h i }). (4.54) i 59

m Β, tanh Βm 1.0 0.5 2 1 1 2 0.5 Βm f m 0.4 0.6 0.8 1.0 1.2 (a) 1.0 (b) 1.0 0.5 0.5 1.0 m 4.5: (a) (4.56) zj = 1 β = 0.5, 1, 2 (b) Ising f(t, m) (a) m s (4.60) 4.5(b) (4.56) ( (4.60) ) m = 0 m = ±m s (4.56) m s (T ) E = d(βf ) dβ = N tanh (βzjm s ) zjm s + 1 2 znjm2 s + ( NβzJ tanh (βzjm s ) + βznjm s ) dm s dβ = 1 2 znjm2 s (4.61) (tanh (βzjm s ) = m s ) (4.49) E = 0 4.2.2 [ ] F (β, M) F 60

F (β, M) 1 β ln states of given M n e βh 0 n (4.62) M(= Nm) N + = (N + M)/2 N = (N M)/2 W (N, M) = N C N+ = N! N +!N! = N! N +!(N N + )! S k B = ln W = N ln N e N + ln N + e (N N +) ln N N + e = N + ln N + N (N N +) ln N N + N ( N+ = N N ln N + N + N N + N ( 1 + m = N ln 1 + m + 1 m 2 2 2 ln N N + N ) ln 1 m 2 ) (4.63) (4.64) JS i S j M = J S i M S j M = Jm 2 (4.65) 10... M M zn2 E T S F (β, m) = 1 2 znjm2 + N ( 1 + m β 2 E(m) = 1 2 znjm2 (4.66) ln 1 + m 2 + 1 m 2 ln 1 m ) 2 (4.67) 4.6(b) [ ] 10 - (Bragg-Williams) 61

m Β, tanh Βm 1.0 0.5 2 1 1 2 0.5 Βm f m 0.4 0.6 0.8 1.0 1.2 (a) 1.0 (b) 1.0 0.5 0.5 1.0 m 4.6: (a) (4.56) ( 4.5 ) zj = 1 β = 0.5, 1, 2 (b) ( - ) f(t, m) (a) 4.5 F 1 f = F/N m f = zjm + 1 2β ln 1 + m 1 m = 0 (4.68) βzjm = 1 2 ln 1 + m 1 m (4.69) m 1 + m 1 m = e2βzjm e βzjm (1 + m) = e βzjm (1 m) (4.58) [ ] m = tanh (βzjm) (4.70) 4.6(b) f(t, m) m = 1/2 m = 0 T = T c f (0) > 0 f (0) < 0 f(t, m) m = 0 T < T c 3 4.7(a) (b) 4.7(c) f(t, m) T = T c 3 62

(a) 1.0 1.0 0.5 0.5 m 0.0 m 0.0 0.5 0.5 (b) 1.0 0.0 0.5 1.0 1.5 2.0 T Tc (c) 1.0 0.0 0.5 1.0 1.5 2.0 T Tc 4.7: (a) f(t, m) (b) f(t, m) (c) f(t, m) () m = ±1 m = ±1 4.2.3 [ ] Ising Ĥ 0 = J n.n. S i S j (4.71) 63

(a) (b) (c) 4.8: F (T, m) (a) T > T c (b)t = T c (c) T < T c F 2 (XY ) (m x, m y ) F (T, m) T c 4.8 m = 0 T < T c 4.8(c) Bourgogne Bordeaux m = 0 m = m 0 m = 0 ( Hilbert ) m ( 0) ( Ising Heisenberg 2 64

XY ) 2 Ising 1 2 2 XY 2 T < T c Berezinskii-Kosterlitz-Thouless(BKT) [ ] [ ] 2 A B A B 2a 2a (sublattice) J J < 0 A B J > 0 (4.74) J < 0 zn/2 Ĥ0 AF = J Si A Sj B (4.72) σ i = S A i, σ j = S B j, J = J (> 0) (4.73) zn/2 zn/2 Ĥ0 AF = J σ i ( σ j ) = J σ i σ j (4.74) J > 0 S B j J < 0 A B (antiferro magnetism) m A = 2 N N A + N A, m B = 2 N N B + N B. (4.75) 65

m A = m B m m = 0 m 0 T N = 1 k B z J (4.76) (Neel) [ ] (lattice gas model) i n i n i = 1 n i = 0 ϕ (< 0) H = ϕ n i n j (4.77) ( ) 11 n i = N (4.78) i ( ) 2 - µn H = ϕ n i n j, µ i n i (4.79) 11 66

N S i = 2n i 1 n i = 1 + S i 2 (4.80) (4.80) n i S i H = ϕ S i S j 4 ( zϕ 4 + µ ) S i µn 2 i 2 (4.81) J = ϕ 4, h = zϕ 4 + µ 2 (4.82) 67

[ (Gauss) ] π e ax2 dx = a x 2 e ax2 dx = 1 2a π a x 2n e ax2 dx = (2n 1)!! π 2 n a n a (4.83) (4.84) (4.85) [ (Stirling) ] n 1 ln n! n ln n e n! ( ) n n ( 2πn 1 + 1 ) e 12n + (4.86) (4.87) [ ] n [d ] [3 ] [ ] Γ(z) = 0 t z 1 e t dt (4.88) Γ(n + 1) = n! (4.89) Γ(n + 1 2 ) = (2n)! π (4.90) 2 2n n! V d (R) = D(ε) = π d/2 (d/2)γ(d/2) Rd (4.91) gv m3/2 2 1/2 π 2 h 3 ε1/2 (4.92) λ T = ( 2π h 2 mk B T ) 1/2 = h 2πmkB T (4.93) 68

Sommerfeld ( F (ε) df(ε) ) dε = F (µ) + 2 C 2n (k B T ) 2n d2n F (ε) dε n=1 dε 2n (4.94) ε=µ f(ε) = 1/[exp{(ε µ)/k B T } + 1] C 2n 1 x 2n 1 dx (4.95) Γ(2n) 0 e x + 1 = ( 1 2 1 2n) ζ(2n) (4.96) Riemann ζ(m) r=1 1 r m (4.97) (4.94) F (ε)f (ε)dε = F (µ) + π2 6 (k BT ) 2 F (µ) + 7π4 360 (k BT ) 4 F (µ) + (4.98) F (ε) = ϕ(ε) 0 ϕ(ε)f(ε)dε = µ 0 ϕ(ε)dε + π2 6 (k BT ) 2 ϕ (µ) + 7π4 360 (k BT ) 4 ϕ (µ) + (4.99) 0 x n 1 z 1 e x 1 dx = Γ(n) z k k Γ(n)g n(z) (4.100) n g n (1) = ζ(n) ( 1 Γ 2) = ( 3 π, Γ = 2) k=1 ( ) π 5 2, Γ = 3 π 2 4, (4.101) ζ(2) = π2 π4 π6 = 1.645, ζ(4) = = 1.082, ζ(6) = 6 90 945 = 1.017, ( ( 3 5 ζ = 2.612, ζ = 1.341, ζ(3) = 1.202, 2) 2) ( 7 ζ = 1.127, ζ(5) = 1.037. (4.102) 2) 69