Advanced Laser and Photon Science (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Laser : the greatest invention of the 20th century レーザー 20

Similar documents
4/8 No. 2

PDF

4/15 No.

02-量子力学の復習

14 2 5

4_Laser.dvi

1 Visible spectroscopy for student Spectrometer and optical spectrum phys/ishikawa/class/index.html

QMI_10.dvi

観測量と物理量の関係.pptx

輻射の量子論、選択則、禁制線、許容線

PowerPoint Presentation

160GHz


1.3 (heat transfer with phase change) (phase change) (evaporation) (boiling) (condensation) (melting) (solidification) 1.4 (thermal radiation)

2章.doc

プラズマ核融合学会誌11月【81‐11】/小特集5

2 X-ray 6 gamma-ray :38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru


130301_OITDA_Taira

橡

untitled


1

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

PowerPoint プレゼンテーション

4 MKSA

TAMA --> CLIO ---> LCGT TAMA 300m基線長 三鷹(NAOJ) CLIO 100m 神岡 低温鏡 年5月17日火曜日

Nano Range Specification Stable & Stable Telescopic Resonators Model Nano S Nano S Nano S Nano S Nano L Nano L Nano L Nano L Nano L Nano L Nano L 130-

Microsoft Word - ●ipho-text3目次

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January

untitled

スライド 1

E F = q b E (2) E q a r q a q b N/C q a (electric flux line) q a E r r r E 4πr 2 E 4πr 2 = k q a r 2 4πr2 = 4πkq a (3) 4πkq a πk 1 ɛ 0 ɛ 0 (perm

untitled

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

OPA134/2134/4134('98.03)



atomic line spectrum emission line absorption line atom proton neutron nuclei electron Z atomic number A mass number neutral atom ion energy

LD

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

JSME-JT

15H02248 研究成果報告書

XFEL/SPring-8

6. [1] (cal) (J) (kwh) ( ( 3 t N(t) dt dn ( ) dn N dt N 0 = λ dt (3.1) N(t) = N 0 e λt (3.2) λ (decay constant), λ [λ] = 1/s

PowerPoint Presentation

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

LM35 高精度・摂氏直読温度センサIC

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

加速器の基本概念 V : 高周波加速の基礎

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析

PET PET


PowerPoint プレゼンテーション

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum

MOSFET HiSIM HiSIM2 1

jigp60-★WEB用★/ky494773452500058730

プログラム


三菱光デバイス



放射線化学, 92, 39 (2011)

x : = : x x

news

Fig.2 Optical-microscope image of the Y face-cross sec- tion of the bulk domain structure of a 0.4-mm-thick MgO-LiNbO3 crystal after chemical etching.

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

研究成果報告書(基金分)

Time Variation of Earthquake Volume and Energy-Density with Special Reference to Tohnankai and Mikawa Earthquake Akira IKAMi and Kumizi IIDA Departmen

IntroductionToQuantumComputer

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc


Temperature Rise in a Birefringent Substrate by RF Discharge Plasma Koichi Takaki, Member, Kunioh Sayama, Student Member, Atsushi Takahashi, Student M

A pp CALL College Life CD-ROM Development of CD-ROM English Teaching Materials, College Life Series, for Improving English Communica

LMC7101/101Q Tiny Low Pwr Op Amp w/Rail-to-Rail Input and Output (jp)

Gravothermal Catastrophe & Quasi-equilibrium Structure in N-body Systems

BH BH BH BH Typeset by FoilTEX 2

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

吸収分光.PDF

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef


報告書

1.06μm帯高出力高寿命InGaAs歪量子井戸レーザ

H1-H4_cs5.indd


T05_Nd-Fe-B磁石.indd

A. Fresnel) (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) (G. Galilei)

TG TG TG ( ) 27 TG TG TG TG II ,4,5 29

●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb

Microsoft Word - ②(添付資料)家庭の夏期節電実態調査の結果について

電磁加速プラズマ流の制御と マッハプローブの特性評価

R963山田裕道様.indd

LM7171 高速、高出力電流、電圧帰還型オペアンプ


On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e

Neutron yield M.R. Hawkesworth, Neutron Radiography: Equipment and Methods, Atomic Energy Review 15, No. 2, , n µc -1 = n/(µa s) ~10 12 n

Transcription:

4/5 No. 1

Advanced Laser and Photon Science (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Laser : the greatest invention of the 20th century レーザー 20世紀最大の発明 Industrial and medical application 産業 医療応 Industrial, daily life CPU Lithography リソグラフィー CD, DVD, Blu-ray, Copy machine Optical communication 光通信 Materials processing 材料加 Medical Hernia treatment, dental treatment, Laser scalpel, photodynamic therapy of cancer 腰痛の治療 科治療 術(レーザーメス) がん治療 LASIK レーシック birthmark removal あざ しみ治療 hair removal 脱 Baby gender selection 供の み分け 性別 4/5 No. 2

Laser-related Nobel laureates レーザー 関 連 のノーベル 賞 Townes, Basov, Prokhorov (1964-Physics):laser Gabor(1971-Physics) :invention and development of holography Bloembergen, Schawlow (1981-Physics):laser spectroscopy Kroto, Curl, Smalley (1996-Chemistry):fullerenes Chu, Cohen-Tannoudji, Phillips (1997-Physics):cool and trap atoms with laser light Zewail(1999-Chemistry):femtosecond chemistry Wieman, Ketterle, Cornell (2001-Physics) : Bose-Einstein condensation Tanaka, Fenn (2002-Chemistry):mass spectrometric analyses of biological macromolecules Glauber (2005-Physics):quantum theory of optical coherence Hall, Hänsch (2005-Physics):optical frequency comb Kao (2009-Physics): optical fiber Haroche, Wineland (2012-Physics) cavity QED Akasaki, Amano, Nakamura(2014-Physics) blue LED Betzig, Hell, Moerner (2014-Chemistry) super-resolved fluorescence microscopy Laser is omnipresent from basic science to our daily life. レーザーの 応 は 基 礎 研 究 から 常 活 までのすみずみにまで き 渡 っている 4/5 No. 3

4/5 No. 4

4/5 No. 5

Advanced Laser and Photon Science (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Monochromaticity 単色性 Laser light has a single frequency or wavelength (pure color). 各種のレーザー光は それぞれある特定の波長のみ を含み その波長は時間的に一定である 4/5 No. 6

4/5 No. 7

Atom Energy level Bohr s condition hν light absorption spontaneous emission stimulated emission Emission of light (photon) upon transition to a lower level Spontaneous emission happens without an incident light E 2 E 1 ν hν = E 2 E 1 frequency h = 6.626 10 34 J s Planck constant Stimulated emission emits a photon induced by the incident light 4/5 No. 8

Before After spontaneous emission photon stimulated emission photon 2 photons (stimulated) absorption photon 4/5 No. 9

Light Amplification by Stimulated Emission of Radiation highly directional, high-intensity, very pure wavelength by spontaneous emission diverse direction and wavelength, low-intensity 4/5 No. 10

Unique properties of a laser Directionality & monochromacity Polarization E = E e ik x iωt+iφ 0 Frequency (wavelength) Phase Direction Laser is an ideal classical electromagnetic wave! 4/5 No. 11

Laser wavelength region 4/5 No. 12

1.2: Argon ion/ 488/514 nm CW/ Krypton ion/ 531/568/647 nm CW/ He-Ne/ 633 nm CW/ CO 2 10.6 µm CW or pulse/ Dye/ 450 nm 900 nm CW or pulse/ Diode/ 650 nm 900 nm CW or pulse/ Ruby/ 694 nm 1 250 µs Nd:YLF 1053 nm 100 ns 250 µs Nd:YAG 1064 nm 100 ns 250 µs Ho:YAG 2120 nm 100 ns 250 µs Ho:YSGG 2780 nm 100 ns 250 µs Er:YAG 2940 nm 100 ns 250 µs Alexandrite/ 720 nm 50 100 µs XeCl 308 nm 20 300 ns XeF Excimer 351 nm 10 20 ns KrF lasers 248 nm 10 20 ns ArF 193 nm 10 20 ns Nd:YLF 1053 nm 30 100 ps Nd:YAG 1064 nm 30 100 ps Ti:Sapphire/ 700 nm 1000 nm 5 fs 100 ps Short pulse laser Continuous wave laser (CW) Pulse laser Ultrashort pulse laser 4/5 No. 13

参 考 書 (Reference):W. T. Silfvast, Laser Fundamentals 4/5 No. 14

Temporal evolution of population density N 1 and N 2 N 1, N 2 Thermal equilibrium (T) T Boltzmann distribution ω spontaneous emission A absorption BW 12 stimulated emission E 2,N 2 Planck s law for cavity radiation BW 21 incident light E 1,N 1 W 4/5 No. 15

Advanced Laser and Photon Science (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Cavity (black body) radiation 4/5 No. 16

4/5 No. 17

dz I(z) I(z+dz) di dz = B(N 2 N 1 ) c I S Gain coefficient g = B(N 2 N 1 ) c Extended Lambert-Beer law I(z) =I 0 e gz = I 0 e (N 2 N 1 )z = B c 4/5 No. 18

Stimulated emission cross section for a variety of lasers Laser λ(nm) σ(m -2 ) He-Ne 632.8 3.0 10-17 Argon 488.0 2.5 10-16 He-Cd 441.6 9.0 10-18 Copper (CVL) 510.5 8.6 10-18 CO 2 10,600.0 3.0 10-22 Excimer 248.0 2.6 10-20 Dye (Rh6G) 577.0 2.5 10-20 Semiconductor 800.0 1.0 10-22 Nd:YAG 1064.1 6.5 10-23 Nd:Glass 1062.3 3.0 10-24 Ti:Sapphire 800.0 3.4 10-23 Cr:LiSrAlF 850.0 4.8 10-24 4/5 No. 19

I(z) >I 0 for z>0 N 2 >N 1 a necessary condition Stimulated emission > absorption At thermal equilibrium N 2 = N 1 exp ω /k B T [ ] << N 1 Energy E 2 thermal equilibrium Energy e E kt e E kt E 1 N 2 N 1 E 1 E 2 N 2 N 1 population inversion Population density Population density 4/5 No. 20

Solid, liquid, gas Plasma Free electron R 1 R 2 Pumping energy source is necessary. Flash lump LED Gas discharge Electric current Chemical reaction Another laser, Oscillator (resonator) Gain medium Pump Laser light 4/5 No. 21

pump Γ spontaneous emission N 2 A = N 2 stimulated emission N 2 N 2 B I c N 1 steady state dn 2 dt = N 2 1 + BI c =0 N 2 = 1 + BI c 4/5 No. 22

I sat = c B = = B c sufficient condition saturation length gl sat = (N 2 N 1 )L sat = 12 ± 5 e gl sat 10 5 4/5 No. 23

gl sat = (N 2 N 1 )L sat = 12 ± 5 g =0.15 m 1 L sat 80 m! one path L =0.2m e gl = 1.03 amplification by one path is small in general L sat L 400 paths is necessary 4/5 No. 24

R 1 R 2 The gain medium is put in a cavity (resonator) with two flat mirrors for lasing. Oscillator (resonator) Gain medium Pumping Laser light Amplifier Feedback amplifier βi o I i I o = AI i I o I i A I o = 1 Aβ I i I o ( 1 β)i o Aβ <1 4/5 No. 25

R 1 I i Oscillator (resonator) Feedback amplifier Gain medium R 2 Pumping βi o I o 1 ( β)i o Laser light I o = Aβ =1 A 1 Aβ I i Infinite amplication Lasing condition exp[2(g a)l]r 1 R 2 =1 A Necessary population inversion β g =(N 2 N 1 ) N 2 N 1 = a ln R 1R 2 2L 4/5 No. 26

Laser g (m -1 ) L (m) m He-Ne 0.15 0.2 400 Argon 0.5 1.0 24 He-Cd 0.3 0.5 80 Copper (CVL) 5 1.0 2.4 CO 2 0.9 1.0 13 Excimer 2.6 1.0 4.6 Dye (Rh6G) 500 0.02 1.2 GaAs 100,000 0.0001 1.2 Nd:YAG 10 0.1 12 Nd:glass 3 0.1 40 4/5 No. 27

R 1 R 2 Gain medium Laser light Oscillator (resonator) Pumping energy source 4/5 No. 28