089-105_10_ŁlŒ¼,‚¼



Similar documents
1272 CHEMOTHERAPY MAR. 1975



CHEMOTHERAPY

CHEMOTHERAPY aureus 0.10, Enterococcus faecalis 3.13, Escherichia coli 0.20, Klebsiella pneumoniae, Enterobacter spp., Serratia marcescens 0.78, Prote

VOL. 43 NO. 4

Fig. 1 Chemical structure of DL-8280

Fig.1 Chemical structure of BAY o 9867


THE JAPANESE JOURNAL OF ANTIBIOTICS 48-8 Enterococcus avium 5Š, Corynebacterium xerosis 10Š, Corynebacterium pseudodiphtheriticum 10Š, Corynebacterium

CHEMOTHERAPY JUNE 1987 Table1 Media used *BHIB, brain heart infusion broth (Difco); /3 -NAD, S -nicotinamidoadeninedinucleotide (Sigma Chemical Co.);

VOL.47 NO.5 Table 1. Susceptibility distribution of Ĉ- lactams against clinical isolates of MRSA MRSA: rnethicillin- resistant Staphylococcus aureus


VOL.32 S-7 CHEMOTHERAPY Table 1 MIC of standard strains of CTRX Fig. 2 Cumulative curves of MIC S. aureus (26 strains )

epidermidis, Enterococcus faecalis, Enterococcus Klebsiella pneumoniae, Proteus mirabilis, indolepositive Proteus spp., Enterobacter spp., Serratia

Staphylococcus epidermidis Streptococcus pneumoniae Staphylococcus epidermidis Streptococcus pneumontae S. epidermidis Table 1. Summary of the organis

CHEMOTHERAPY NOV S. aureus, S. epidermidis, E. coli, K. pgeumoniae, E. cloacae, S. marcescens, P. mirabilis, Proteus, P. aeruginosa Inoculum siz

Clostridium difficile ciprofloxacin, ofloxacin, norfloxacin Bifidobacterium Lactobacillus Lactobacillus Bacteroides fragilis B. fragilis C. difficile

Key words:fatty acid,plant oil,staphylococcus aureus,skin care, atopic dermatitis

988 CHEMOTHERAPY NOV. 1971



CHEMOTHERAPY Proteus mirabilis GN-79 Escherichia coli No. 35 Proteus vulgaris GN-76 Pseudomonas aeruginosa No. 11 Escherichia coli ML-1410 RGN-823 Kle

Streptococcus pneumoniae,streptococcus pyogenes,streptococcus agalactiae,neisseria gonorrhoeae,h.influenzae,moraxella subgenus Branhamella catarrharis


VOL. 23 NO. 3 CHEMOTHERAPY 1067 Table 2 Sensitivity of gram positive cocci isolated from various diagnostic materials Table 3 Sensitivity of gram nega

CHEMOTHERAPY JUNE 1993 Table 1. Background of patients in pharmacokinetic study

CHEMOTHERAPY APR Fig. 1 Chemical structure of cefotetan (CTT, YM09330)



Table1MIC of BAY o 9867 against standard strains

VOL. 36 S-3 CHEMOTHERAPY 437

dihydrostreptomycin(sm), sulfanilamide(sa), kanamycin(km), paromomycin(prm), fradiomycin(frm), ampicillin(apc), cephaloridine (CER), nalidixic acid(na

Takio ICHITANI and Teruko HIGASHIKAWA: Germination of Aphanomyces iridis oospores on the basal medium for selective isolation with addition of bacteri



Table 1. Antimicrobial drugs using for MIC



VOL. 23 NO. 3 CHEMOTHERAPY 1379 Table 1 Susceptibility of clinical isolated strains to Tobramycin

CHEMOTHERAPY APRIL 1992 Acinetobacter calcoaceticus Staphylococcus aureus, Escherichia coli P. aeruginosa E. eoli, Klebsiella pneumoniae Serratia marc

CHEMOTHERAPY FEB Table 1. Activity of cefpirome and others against clinical isolates



CHEMOTHERAPY Methicillin-resistant S.aureus(MRSA) coccus epidermidis 105 Streptococcus pyogenes E.faecali senterococcus avium Enterococcus faecium Str

THE JAPANESE JOURNAL OF ANTIBIOTICS 65 6 Dec DNA 2, , % 1.65% 1.17% 90% 9 Escherichia coli -

Key words: E. coli O 157: H7, fosfomycin, verotoxin, mouse infection

CHEMOTHERAPY DEC (NFLX), ofloxacin (OFLX), ciprofloxacin (CPFX) Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterococcus faecali

CHEMOTHERAPY JUN Citrobacter freundii 27, Enterobacter aerogenes 26, Enterobacter cloacae 27, Proteus rettgeri 7, Proteus inconstans 20, Proteus

日本化学療法学会雑誌第59巻第5号

untitled

VOL.35 S-2 CHEMOTHERAPY Table 1 Sex and age distribution Table 2 Applications of treatment with carumonam Table 3 Concentration of carumonam in human


日本化学療法学会雑誌第51巻第2号

Jan THE JAPANESE JOURNAL OF ANTIBIOTICS XL-1 Table 1. Outline of administering doses, routes and sampling times *: 4 ml/hr/kg Bacillus subtilis

CHEMOTHERAPY DEC Table 1 Antibacterial spectra of T-1982, CTT, CMZ, CTX, CPZ and CEZ 106 CFU/ml Note: P; Peptococcus, S; Streptococcus, G; Gaffk

Table 1. MICs of fosfomycin and other antibiotics determined by agar dilution method against Pseudomonas aeruginosa FOM: fosfomycin, PIPC: piperacilli

日本化学療法学会雑誌第61巻第6号

CHEMOTHERAPY 52 MAY d a a. Normal S. aureus d Đg/ml, 2h; e b b Đg/ml, Abnormal e. division lh; Abnormal thickening division cross f c. 1

CHEMOTHERAPY FEB Table 1 Background of volunteers

Table 1. Antibacterial activitiy of grepafloxacin and other antibiotics against clinical isolates

日本化学療法学会雑誌第64巻第4号

Effects of Light and Soil Moisture Condition on the Growth of Seedlings for Quercus serrata and Quercus variabilis NISHIMURA, Naoyuki*, OTA, Takeshi**

CHEMOTHERAPY Table 1 Clinical effect of Sultamicillin


CHEMOTHERAPY Table 1 Urinary excretion of mezlocillin Fig. 4 Urinary excretion of mezlocillin Fig. 3 Blood levels of mezlocillin

Staphylococcus sp. K.pneumoniae P.mirabilis C.freundii E. cloacae Serratia sp. P. aeruginosa ml, Enterococcus avium >100ƒÊg/ml

Fig. 1 Chemical structure of KW-1070

Fig.2. Sensitivity distribution of clinical isolates of S. epidermidis (24 strains, 106 CFU/ml) Staphylococcus aureus Staphylococcus epider- midis Ent

PCG = Benzylpenicillin ABPC= Ampicillin AMPC= Amoxicillin MPIPC = Oxacillin MCIPC = Cloxacillin SBPC= Sulbenicillin PIPC= Piperacillin

VOL. 34 S-2 CHEMOTH8RAPY 913

THE JAPANESE JOURNAL OF ANTIBIOTICS ( 37 ) methicillin-susceptible Staphylococcus aureus (MSSA) Escherichia coli levof


VOL.30 S-1 CHEMOTHERAPY Table 1 Antibacterial activity of CTT against standard strains Table 2 Antibacterial activity of CTT against standard strains

pneumoniae 30, C. freundii 32, E. aerogenes 27, E. cloacae 32, P. mirabilis 31, P. vulgaris 34, M. morganii 32, S. marcescens 31, H. influenzae 27, P.



CHEMOTHERAPY OCT Fig. 1 Chemical structure of CVA-K

Key Words: Klebsiella pneumoniae, CEP-AIS, MIC, "MBC", MIC of drugs in combination


JUNE 1988



CHEMOTHERAPY

報告書 H22-2A-09

02-(a)-Łi’ì™·Łv-4.11

CHEMOTHERAPY

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc

総 説 6 6 PIMs P S J 7

03-b-„FŒ{›xŒ¾-4.02

Key words: Disinfectants, Gram negative rods, Bactericidal effect P. aeruginosa 1, P. fluorescens 20 P. putida 179, P. cepacia 216 P. maltophilia 227,

Key words: change serotype, Pseudomonas aeruginosa anti-pseudomonal drug,


Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee


CHEMO THE RAPY OCT. 1994

Key words:group D streptococci,classification,enterococcal infections, Antibiotic susceptibility,vancomycin

Key words: Streptococcus agalactiae, Group B Streptococci, Chloramphenicol resistance Chloramphenicol acetyltransferase

CHEMOTHERAPY JUNE 1986

Studies on the nutritional physiology of rice stem rot fungi, Leptosphaeria salvinii and Helminthosporium sigmoideum var. irregulare (II) On the carbo

Transcription:

28 89 105 2007 89 1) * 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) Jia Yu 1) 1) 1) 1) 1) 2007 30 2007 12 10 7 50 HPLC - - 7 1) 371-8514 3-39-15 *

90 DNA DNA 1) - - - - - - 30S 50S trna 30S trna 50S trna II DNAgyrase DNA DNA 2-6) 7) 4) Gammaproteobacteria Enterobacteriales Escherichia coli Gammaproteobacteria Pseudomonadales Pseudomonas aeruginosa Bacilli Bacillales Bacillus subtilis Bacilli Lactobacillales Enterococcus faecalis 50 HPLC 4) - G

91 quinoline Alanine racemase -alanine- -alanine ligase - -cycloserine Sigma USA Escherichia coli IAM 12119 Pseudomonas aeruginosa IAM 1514 Bacillus subtilis IAM 12118 Enterococcus faecalis JCM 5803 Type strain IAM Culture Collection Japan Collection of Microorganisms JCM E. coli GN 4351 P. aeruginosa GN231 Nutrient Broth NB Trypticase Soy Broth TSB Becton Dickinson USA Brain Heart Infusion Broth BHIB GAM 199 199 RPMI1640 1640 Eagle MEM MEM Fisher s FM SM+ -Ala -alanine -alanine SM+ -Ala 37 NB TSB BHIB GAM 199 1640 MEM FM SM 199 -Ala 4ml 10 l 20-24 100-10 600nm minimum growthinhibitory concentration MIC 50% 50% fifty percent growthinhibitory concentration IC 50 g/ml 100% IC 50 10,000 xg 10 M150 IC 50 PBS 10% 1.0M HClO 4 PCA 200 l PCA 5-7% DISMIC-13HP 100 l L6000 o- OPA - HPLC 8) 100 l HPLC 2619F 4mm x 50mm 70 NaCl- / OPA 70 1,3-diaminopropane Dap putrescine Put cadaverine Cad spermidine Spd spermine Spm agmatine Agm N 1 - N 1 -acetylspermidine AcSpd Sigma USA aminopropylcadaverine APCad 4 9-14) - N 1 - -

92 - - - 4) NB GAM mol/g wet weight Table 1 TSB BHIB NB GAM MIC 50% IC 50 HPLC VCM D-CS -alanine - -alanine SM 199 NB GAM VCM D-CS NB 199 GAM - -alanine SM+ -Ala SM+ -Ala HPLC Fig 1-1A SM 199 NB Fig 3-2 A-control Fig 4-2 A-control Fig 5-2 A1-control 1 Cellular concentration of polyamines of Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Enterococcus faecalis, and polyamine content of Nutrient Broth and liquid GAM medium used for their culture. Typical data from Fig. 1-1 (E. faecalis grown in GAM), Fig. 3-2 (P. aeruginosa grown in NB) and Fig. 5-2 (E. coli grown in NB, B. subtilis grown in NB, E. faecalis grown in NB) are shown. Bacteria growing at 37 were harvested at late-exponentially growing phase. T, Type strain. Abbreviations for polyamines are as shown in Fig. 1-1.

93 Fig 1-1B NB HPLC Fig 4-2 B-control Fig 5-2 B-control NB GAM GAM Fig 1-1C NB Fig 4-2 C-control Fig 5-2 C-control SM+ -Ala SM+ -Ala D-CS Fig 1-2 A B C 1 1 HPLC analysis of polyamines extracted from Escherichia coli IAM 12119 (A), Bacillus subtilis IAM 12118 (B) and Enterococcus faecalis JCM 5803 (C) grown in the complete synthetic medium supplemented with -alanine (SM+ -Ala), synthetic 199 medium (199) and GAM medium (GAM) in the absence (control) or presence of Vancomycin (VCM) at the concentration (IC50), shown as arrow in Fig. 1-2. Bacteria growing at 37 were harvested at late-exponentially growing phase. Abbreviations for polyamines: Dap, diaminopropane; Put, putrescine; Cad, cadaverine; Spd, spermidine; APCad, aminopropylcadaverine ; Spm, spermine; Agm, agmatine; AcSpd, N 1 -acetylspermidine. Printed numbers on elution peaks are corresponded to the elution time in scale of abscissa (min). Relative fluorescence and elution times are omitted in other HPLC chromatograms in the present study.

94 D-alanine MIC 50 IC50 D-alanine D- CS D-CS Alanine racemase D-Alanine-D-alanine ligase SM+ -Ala SM+D-Ala D-CS VCM NB 80 g/ml VCM 199 GAM VCM Fig 1-2D 2E 50 D E control HPLC Fig 1-1B 1C VCM - VCM VCM 1 2 Growth inhibition curves of Escherichia coli IAM 12119, Bacillus subtilis IAM 12118 and Enterococcus faecalis JCM 5803 in the complete synthetic medium containing -Ala (SM+ -Ala) ( ) or -Ala (SM+ - Ala) ( ) (in Figs. A-C), synthetic 199 medium (in Fig. D) ( ) or GAM medium (in Fig. E) ( )by -Cycloserine ( - CS) or Vancomycin (VCM). The growth of Escherichia coli was not inhibited by VCM at the concentration of 80 g/ml. Arrow indicates the fifty percent growthinhibitiory concentration (IC50) by VCM (Figs. D and E).

95 NB PCG PIPC FMOX 50 IC 50 Fig 2-1 3 IC 50 PCG 18 g/ml PIPC 0.5 g/ml FMOX 0.09 g/ml PCG 8 g/ml PIPC 12 g/ml FMOX 0.08 g/ml PCG 0.7 g/ml PIPC 0.4 g/ml FMOX 36 g/ml PCG PIPC FMOX IC 50 HPLC Fig 2-1 A 600nm pmol Fig 2-2 50% PIPC FMOX Fig 2-2A PIPC 1 g/ml Fig 2-1A Fig 2-2B PIPC - PIPC NB NB Table1 PCG PIPC FMOX Fig 2-2C FMOX PCG PIPC - 2 1 Growth inhibition curves of Escherichia coli IAM 12119 (A), Bacillus subtilis IAM 12118 (B) and Enterococcus faecalis JCM 5803 (C) in Nutrient Broth by Benzylpenicillin (Penicillin G)(PCG), Piperacillin (PIPC) or Flomoxef (FMOX). Arrows indicate the tubes near at IC50 used for polyamine analysis.

96 2 2 Cellular polyamine content (pmol /absorbance at 600 nm for growth turbidity) of Escherichia coli IAM 12119 (A), Bacillus subtilis IAM 12118 (B) and Enterococcus faecalis JCM 5803 (C) grown in Nutrient Broth in the presence of Benzylpenicillin (Penicillin G) (PCG), Piperacillin (PIPC) or Flomoxef (FMOX) at the concentrations shown as arrows in Fig. 2-1. Abbreviations for polyamines are as shown in Fig. 1-1. KM Aminoglycoside acetyltransferase ACC 6 GN231 SM Aminoglycoside adenyltransferase AAD 3 GN3451 14,15) KM SM Fig 3-1 NB SM 30 KM 5 10 100 KM SM 50 HPLC KM OPA 16) HPLC KM Fig 3-2C D SM SM KM HPLC Fig 3-2 IC 50 10 g/ml Fig 3-2A SM Fig 3-2B SM 50 500 g/ml Fig 3-2B KM KM Fig 3-2C KM

97 HPLC Fig 3-3 Gammaproteobacteria Pseudomonas KM 6 -NH 2 KM N 1 - NB EM TC CP Fig 4-1 50 IC 50 Fig 4-1A 1B 1C TC Fig 4-2 CP EM NB SM+L-Ala Fig 4-3 SM 200 g/ml 1mM EM Fig 4-3 EM KM SM NB 1mM Fig 4-2D 2E Fig 4-2A control Fig 4-2D control NB EM 50% Fig 4-2D 2E SM 3 1 Growth inhibition curves of Escherichia coli IAM 12119 (sensitive Type strain) and E. coli GN3451(SM-resistant strain) grown in Nutrient Broth by Streptomycin (SM) (A), and Pseudomonas aeruginosa IAM 1514 (sensitive Type strain) and P. aeruginosa GN231 (KM-resistant strain) grown in Nutrient Broth by Kanamycin (KM) (B). Arrows indicate about IC50 in this experiment.

98 3 2 HPLC analysis of polyamines extracted from the cells of Escherichia coli IAM 12119 (sensitive Type strain) (A) and E. coli GN3451 (SM-resistant strain) (B), and the culture supernatant (Sup) grown in Nutrient Broth in the absence (control) or presence of Streptomycin (SM) at the concentration of IC50, and the cells of Pseudomonas aeruginosa IAM 1514 (sensitive Type strain) (C) and P. aeruginosa GN231 (KM-resistant strain) (D), and the culture supernatant (Sup), grown in Nutrient Broth in the absence (control) or presence of Kanamycin (KM) at the concentration of 100 or 200 g/ml. Abbreviations for polyamines are as shown in Fig. 1-1.

99 3 3 Comparisons of polyamine distributions in the cells of Escherichia coli IAM 12119 (sensitive Type strain) (A), E. coli GN3451 (SM-resistant strain) (B), Pseudomonas aeruginosa IAM 1514 (sensitive Type strain) (C) and P. aeruginosa GN231 (KM-resistant strain) (D). The bacteria were grown in Nutrient Broth in the absence (control) or presence of Streptomycin (SM) or Kanamycin (KM) at the concentration of IC50. Polyamine contents ( mol/wet weight of cells) were shown as a percent (%) against to the total of cellular polyamines ( mol/wet weight of cells). Abbreviations for polyamines are as shown in Fig. 1-1. 1 Fig 5-1 SM+L-Ala NB OFLX 4 1 Growth inhibition curves of Escherichia coli IAM 12119 (A), Bacillus subtilis IAM 12118 (B) and Enterococcus faecalis JCM 5803 (C) in Nutrient Broth in the presence of Erythromycin (EM), Chloramphenicol (CP) or Tetracyclin (TC). c, control (0 g/ml). Arrows indicate the tubes near at IC50. NFLX OFLX Fig 5-2 OFLX 50 IC 50 NB Fig.5-1 HPLC SM OFLX NB

100 4 2 HPLC analysis of polyamines extracted from Escherichia coli IAM 12119 (A), Bacillus subtilis IAM 12118 (B) and Enterococcus faecalis JCM 5803 (C) grown in Nutrient Broth in the absence (control) or presence of Erythromycin (EM), Chloramphenicol (CP) or Tetracycline (TC) at the concentrations shown as arrow in Fig. 4-1. HPLC analysis of polyamines extracted from Escherichia coli IAM 12119 grown in Nutrient Broth (NB) containing 200 g/ml of spermidine (D) or the complete synthetic medium (SM+ -Ala) containing 200 g/ml of spermidine (E), in the absence (control) or presence of Erythromycin at the concentration (IC50) as shown in Fig. 4-3. Abbreviations for polyamines are as shown in Fig. 1-1.

101 4 3 Growth inhibition curves of Escherichia coli IAM 12119 in Nutrient Broth (NB) or the complete synthetic medium (SM+ - Ala) (SM) by Erythromycin in the absence or presence of spermidine (Spd) at the concentration of 200 g/ml. c, control (0 g/ml). Arrows indicate the tube near at IC50. 5 1 Growth inhibition curves of Escherichia coli IAM 12119, Bacillus subtilis IAM 12118 and Enterococcus faecalis JCM 5803 in Nutrient Broth (NB) or the complete synthetic medium (SM+L-Ala) by Ofloxacin (OFLX). c, control (0 g/ml). The cells in the tube of the arrow were subjected to polyamine analysis. 5 2 HPLC analysis of polyamines extracted from Escherichia coli IAM 12119 (A) Bacillus subtilis IAM 12118 (B) and Enterococcus faecalis JCM 5803 (C) grown in Nutrient Broth (NB) (A-1, B, C) or the complete synthetic medium (SM+ -Ala) (A-2) in the absence (control) or presence of Ofloxacin (OFLX) at the concentrations shown as arrows in Fig. 5-1. Abbreviations for polyamines are as shown in Fig. 1-

102 Fig 5-2 A-1 A-2 NB OFLX NB OFLX SM 199 NB GAM Fig 6-1 TSB BHIB NB Fig 3-2 Fig 4-2 RPMI1640 FM 199 Fig 1-3 1640 Fig.6-1A 1640 - SM Fig.1-3 Fig 5-2 Fig 6-1B 199 1640 NB Fig 6-1C 1640 1640 Fig 6-1D SM 199 SM 199 1640 Fig 6-1E 1mM 199 1mM 199 1640 Fig 6-1E RNA RNA rrna RNA trna RNA mrna 5,18-20) RNA DNA 21) 50

6 1 HPLC analysis of polyamines extracted from the cells of Escherichia coli IAM 12119 grown in Tripticase Soy Broth (TSB), Brain Heart Infusion Broth (BHIB), RPMI1640 medium (1640) and Fisher s medium (FM) (A), and the culture supernatant (Sup) after the cultivation in the media (B). Polyamines extracted from the cells of Pseudomonas aeruginosa IAM 1514 grown in 199 medium or 1640 medium(c). Polyamines extracted from the cells of Bacillus subtilis IAM 12118 grown in 1640 medium and its Sup (D). Polyamines extracted from the cells of Enterococcus faecalis JCM 5803 grown in 199 medium, 1640 medium, the 199 medium supplemented with 1 mm spermidine (Spd) or the 1640 medium supplemented with 1 mm spermidine (Spd) (E). Abbreviations for polyamines are as shown in Fig. 1-1. 103

104 Polyamine World in Life ) 13 17 14 15 19 ) ) 11 2000 1993 1997 35 442-450 2002 18 17-43 2006 44 320-330 Cohen SS. A guide to the polyamines. Oxford University Press, Oxford, 1998-1990 28 162-171.. 2002 23 149-158 Hamana K, Satake S. Absence of cellular polyamines in gram-positive anaerobic cocci and lactic acid bacteria. J Gen Appl Microbiol 1995 41 159-163 10 Hamana K, Akiba T, Uchino F, Matsuzaki S. Distribution of spermine in bacilli and lactic acid bacteria. Can J Microbiol 1989 35 450-455 11 Hamana K. Distribution of diaminopropane and acetylspermidine in Enterobacteriaceae. Can J Microbiol 1995 42 107-114 12 Hamana K. Polyamine distribution catalogues of clostridia, acetogenic anaerobes, actinobacteria, bacilli, heliobacteria and haloanaerobes within gram-positive eubacteria. Microbiol Cult Coll 1999 15 9-28 13 Hamana K, Sakamoto A, Tachiyanagi S, Terauchi E. Polyamine profiles of some members of the gamma subclass of the class Proteobacteria Polyamine analysis of twelve recently described genera. Microbiol Cult Coll 2003 19:3-11 14 Hamana K, Satake S, Iyobe S, Matsuzaki S. Polyamine distribution patterns in Pseudomonas, Alkaligenes and Comamonas. Ann Rep Coll Med Care Technol Gunma Univ 1992 13 105-109 15 2000 16 ) 1980 17 HPLC 2004 25 183-189 18 1993 65 86-104 19 2004 42 363-364 20 Kouvel EC, Petropoulos AD, Kalpaxis DL. Unraveling new features of clindamycin interaction with functional ribosomes and dependence of the drug potency on polyamines. J Biol Chem 2006 281 23103-23110 21 Kwon DH, Lu CD. Polyamine effects on antibiotic susceptibility in bacteria. Antimicrob Agents Chemother 2007 51 2070-2077

105 Escherichia coli, Pseudomonas aeruginosa Bacillus subtilis Enterococcus faecalis Koei HAMANA 1) *, Yoko YOKOYAMA 1), Satomi TACHIYANAGI 1), Rie TERAUCHI 1), Tomomi AIZAKI 1), Eri ARAI 1), Aya SAITO 1), Kaoru UCHIKATA 1), Hajime OHNISHI 1), Wakako SATO 1), Kanako GOUMA 1), Jia Yu 1), Yurie INO 1), Yukiko UMEMURA 1), Chiharu MOCHIDUKI 1) and Ryuichi HOSOYA 1) Cellular polyamines extracted from the bacteria Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Enterococcus faecalis grown in the absence or presence of antibiotics belonging to seven chemical families, at fifty percent growth- inhibitory concentration (IC50 ), were analyzed by high performance liquid chromatography (HPLC). E. coli synthesize putrescine (Put), cadaverine(cad), agmatine(agm), spermidine(spd) and acetylspermidine(acspd), P. aeruginosa Put, Cad and Spd, and B. subtilis Put, Spd and Agm. E. faecalis produce no polyamines and uptake Spd from media. Cellular levels of the polyamines were compared between control bacteria and the inhibited bacteria by antibiotics. All polyamine levels in E. coli, and Spd and/or Agm levels in B. subtilis and E. faecalis were not sensitive for the presence of Vancomycin (glycopeptide). By Benzylpenicillin, Piperacillin and Flomoxef ( -luctam), Put, Cad, AcSpd were decreased and Spd was increased in E. coli, and Spd in B. subtilis and E. faecalis was decreased. Streptomycin, Kanamycin and Amikacin (aminoglycoside) repressed acetylation of Spd in E. coli and Cad synthesis in P. aeruginosa, including sensitive and resistant strains for the drugs. AcSpd level in E. coli and Spd level in B. subtilis and E. faecalis were decreased in the presence of Erythromycin (macrolide), Tetracycline (tetracycline) and Chloramphenicol (phenylalanine derivative). AcSpd, Put and Cad in E.coli and Spd in B. subtilis were decreased whereas Spd was not effective to Ofloxacin and Norfloxacin (pyridone carboxylic acid). AcSpd synthesis in E. coli was inhibited whereas Spd uptake in E. faecalis was not, by the antibiotics. Antibiotics, Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Polyamine 1) School of Health Sciences, Faculty of Medicine, Gunma University Maebashi, Gunma 371-8514, Japan * Reprint address