56 4 2 log N ( t ) 1 0 0 t 1/2 τ m 2τ m time t 4.1: λ decay rate λ = 1 τ m (4.8) A B b Γ = h τ m = hλ (4.9) A B + b (4.10) Q Q = M(B)+M(b) M(A) (4.11)



Similar documents
42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

untitled

6. [1] (cal) (J) (kwh) ( ( 3 t N(t) dt dn ( ) dn N dt N 0 = λ dt (3.1) N(t) = N 0 e λt (3.2) λ (decay constant), λ [λ] = 1/s

日本内科学会雑誌第98巻第3号

σ f n λ f λ f = 1 nσ f. (4.1) 2. E n, m 1 generation,t g v t g = λ f v = 1 (4.2) vnσ f E = 1 2 mv2 2E v = m t g = 1

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

PowerPoint Presentation

日本内科学会雑誌第101巻第12号

untitled

dプログラム_1


放射線専門医認定試験(2009・20回)/HOHS‐01(基礎一次)

rcnp01may-2

Doc. No. MA035A-RC-D02-1 Rev Hitz B52 1

03J_sources.key

global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, ( 03) N. P. A722, 117c ( 03) Proc. of NENS03 (to be

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

一般演題(ポスター)

untitled

36 th IChO : - 3 ( ) , G O O D L U C K final 1

スライド 1

仁科財団50周年のあゆみ/仁科博士写真p1

FPWS2018講義千代

1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA (

Coulomb potential

放射線化学, 92, 39 (2011)

24.15章.微分方程式

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

untitled

日本内科学会雑誌第102巻第10号

yakuri06023‡Ì…R…s†[


jigp60-★WEB用★/ky494773452500058730

プログラム


δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

untitled


1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

第101回 日本美容外科学会誌/nbgkp‐01(大扉)

27巻3号/FUJSYU03‐107(プログラム)

パーキンソン病治療ガイドライン2002

本文27/A(CD-ROM

tnbp59-20_Web:P1/ky108679509610002943

第85 回日本感染症学会総会学術集会後抄録(III)


「スウェーデン企業におけるワーク・ライフ・バランス調査 」報告書

JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb * 2

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

チュートリアル:ノンパラメトリックベイズ

加速器の基本概念 V : 高周波加速の基礎

EOS and Collision Dynamics Energy of nuclear matter E(ρ, δ)/a = E(ρ, )/A + E sym (ρ)δ 2 δ = (ρ n ρ p )/ρ 1 6 E(ρ, ) (Symmetric matter ρ n = ρ p ) E sy

平成19年度

IA

4 2 p = p(t, g) (1) r = r(t, g) (2) p r t g p r dp dt = p dg t + p g (3) dt dr dt = r dg t + r g dt 3 p t p g dt p t r t = Benefit view dp

PowerPoint Presentation

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

x : = : x x

A A. ω ν = ω/π E = hω. E

4/15 No.

tnbp59-17_Web:プO1/ky079888509610003201

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

(1) (2) (3) (4) 1

_04佐藤.indd


untitled


68 JAXA-RR r v m Ó e ε 0 E = - Ó/ r f f 0 f 1 f = f 0 + f 1 x k f 1 = f k e ikx Ó = Ó k e ikx Ó k 3

SPring-8_seminar_

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

Fig V 2.3.3

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January

陽電子科学 第4号 (2015) 3-8

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

46 Y Y Y Y 3.1 R Y Figures mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y Y Figure 5-

Microsoft PowerPoint - tabe_lecture_series_1 [互換モード]

スケーリング理論とはなにか? - --尺度を変えて見えること--

02-量子力学の復習

untitled

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

(Jackson model) Ziman) (fluidity) (viscosity) (Free v

X線分析の進歩36 別刷

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved.

REALV5_A4…p_Ł\1_4A_OCF

untitled

「都市から地方への人材誘致・移住促進に関する調査」

<91498EE88CA D815B2E786C73>

〔 大 会 役 員 〕

橡本体資料+参考条文.PDF

Lecture on

Kaluza-Klein(KK) SO(11) KK 1 2 1

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

BB 報告書完成版_修正版) doc

わが国企業による資金調達方法の選択問題

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

1401_HPCI-lecture4.SNEOS.pptx

Transcription:

4 4.1 t N(t) t t +dt dn(t) N(t) dn(t) = λn(t)dt (4.1) dn(t) dt = λn(t) (4.2) t =0 N 0 = N(0) 4.1 N(t) =N 0 e λt (4.3) log N(t) = log N 0 λt (4.4) mean life half-life t N(t) τ m =1/λ 1/e τ m 1/2 t 1/2 T 1/2 : N(t + τ m ) = 1 N(t + t 1/2 ) = 1 (4.5) N(t) e N(t) 2 e e=2.718 281 828 459 045 235 (4.6) t 1/2 = τ m log e 2=0.693 τ m (4.7) 55

56 4 2 log N ( t ) 1 0 0 t 1/2 τ m 2τ m time t 4.1: λ decay rate λ = 1 τ m (4.8) A B b Γ = h τ m = hλ (4.9) A B + b (4.10) Q Q = M(B)+M(b) M(A) (4.11) Q Q = T B + T b (4.12) A T B + T b Q 4.2 exp (iht/ h) E R E = E R + iγ 2 (4.13)

4.1 57 count Γ Q T B + T b 4.2: exp (i Ēh ) [ ( t ER = exp i h + iγ )] = exp 2 h ( i E ) R h t exp ( Γ ) 2 h (4.14) ( exp i Ē ) 2 h t = exp ( Γ h ) t = exp ( λt) (4.15) (4.2) (4.9) Planck [1] h = 1.054 571 596 (82) 10 34 Js (4.16) = 6.582 118 89 (26) 10 22 MeV s τ m Γ 4.3 A =8 8 Be 8 Be 0 + 2 + 4 + J π =0 + Γ =8.8 ± 1.7 ev τ m =(7.5 ± 1.4) 10 17 s J π =2 + Γ =1.50 ± 0.02 MeV τ m =(4.39 ± 0.06) 10 22 s J π =4 + Γ 3.5 MeV τ m 1.9 10 22 s A =8 4.3 8 B β +

58 4 18 16 14 8 3Li β β 8 5B 12 10 α 4 + 8 6 4 2 0 [ MeV ] 4 4 2He + 2He α α 8 4Be 2 + 0 + 4.3: 8 Be disintegration proton decay

4.2 59 4.2 β β e ν e β + e + ν e β + EC: electron capture K β (A, Z) (A, Z +1)+e + ν e β + (A, Z) (A, Z 1) + e + + ν e (4.17) (A, Z)+e (A, Z 1) + ν e β β n p + e + ν e β + p n + e + + ν e (4.18) p + e n + ν e Q β Q β (A, Z) = M(A, Z) M(A, Z +1) = B(A, Z +1) B(A, Z)+(m n m H ) β + Q β +(A, Z) = M(A, Z) M(A, Z 1) 2m e = B(A, Z 1) B(A, Z) (m n m H ) 2m e (4.19) Q EC (A, Z) = M(A, Z) M(A, Z 1) = B(A, Z 1) B(A, Z) (m n m H ) β + 2m e (4.17) 2m e Q Q β + Q EC > 0 >Q β + 4.4 A =56 56 Fe 56 Mn β 56 Fe 56 Co β + /EC 56 Fe

60 4 5 4 3 2 1 Q β 2.579 h 56 25Mn β EC β 78.8 d 56 27Co Q β Q EC 0 [ MeV ] 56 26Fe 4.4: 56 Mn β 56 Co β + /EC Q Q β Q EC β + 2m e β β + 10 3 s Q 4.2 β +

4.3 61 4.3 separation energy S n S p mass excess S n (A, Z) = M(A 1,Z)+m n M(A, Z) = M(A 1,Z)+ M(1, 0) M(A, Z) = B(A, Z) B(A 1,Z) S p (A, Z) = M(A 1,Z 1) + m H M(A, Z) = M(A 1,Z 1) + M(1, 1) M(A, Z) = M(A, Z) B(A 1,Z 1) (4.20) S 2n (A, Z) = M(A 2,Z)+2m n M(A, Z) = M(A 2,Z)+2 M(1, 0) M(A, Z) = B(A, Z) B(A 2,Z) S 2p (A, Z) = M(A 2,Z 2) + 2m H M(A, Z) = M(A 2,Z 2) + 2 M(1, 1) M(A, Z) = B(A, Z) B(A 2,Z 2) (4.21) 0 S 2p S p drip line 0 proton drip line 0 neutron drip line Coulomb

62 4 4.5 Z =9 15 MeV 19 F N =10 Z =9 15 separation energies Sx [ MeV ] 10 5 0 S 2p S p S n F isotopes S 2n 4 6 8 10 12 14 16 18 20 neutron number N 4.5: Z =9 A =5 A =8 8 Be A =8 A =5 A =5 5 He 5 Li 4 He 4.6 4.7 A =5 5 He Q =0.89 MeV 5 Li Q =1.97 MeV 5 He 4 He + p Γ 0.60 MeV (4.22) 5 Li 4 He + n Γ 1.5 MeV 10 22 s

4.3 63 B ( A,Z ) / A [ MeV ] 8 7 6 5 4 3 2 4 He He Li Be B C O N 1 0 H 2 4 6 8 10 12 14 16 18 20 22 mass number A 4.6: Z 8 10 8 6 1/2 1/2 4 2 0 [ MeV ] 4 2He + n 5 2He 3/2 5 3Li 3/2 4 2He + p 4.7: A =5 pairing energy J π =0 + P n (A, Z) = 1 4 ( 1)A Z+1 [ S n (A +1,Z)+S n (A 1,Z) 2S n (A, Z)] P p (A, Z) = 1 4 ( 1)Z+1 [ S p (A +1,Z +1)+S p (A 1,Z 1) 2S p (A, Z)] (4.23)

64 4 4.4 A 200 α S α (A, Z) = M(A 4,Z 2) + M(4, 2) M(A, Z) = B(A, Z) B(A 4,Z 2) B(4, 2) (4.24) M(4, 2) = M( 4 He) Q Q α (A, Z) = S α (A, Z) (4.25) B(4, 2) = B( 4 He) = 28.296 MeV (4.26) 4.6 S α (A, Z) < 0 4.8 Q α (A, Z) = S α (A, Z) > 0 A 90 214 Po 210 Pb 214 Po 210 Pb + α (4.27) 214 Po S = 210 Pb α 214 Po 2 (4.28) spectroscopic factor Coulomb 4.9

4.4 65 120 100 proton number Z 80 60 40 20 0 0 20 40 60 80 100 120 140 160 180 neutron number N 4.8: S α (A, Z) < 0 Coulomb potential 0 S α α r potential quantum mechanical penetration of the α wave function through the Coulomb barrier nuclear potential 4.9: Coulomb

66 4 Coulomb R V (r) Coulomb V (r) > 0 Coulomb 4.9 S α (> 0) V (r) ( S α ) > 0 L =0 s Schrödinger Coulomb [ 8m exp h V (r) E dr ] (4.29) V (r) 4.9 E = S α V (r) E 0 Coulomb 210 Po 0.298 µs 10 15 y 232 Th 1.41 10 10 y 25

4.5 67 4.5 (A, Z) (A 1,Z 1 )+(A 2,Z 2 ) { A = A1 + A 2 Z = Z 1 + Z 2 (4.30) Q Q = B(A 1,Z 1 )+B(A 2,Z 2 ) B(A, Z) (4.31) A 1 /A = Z 1 /Z A 2 /A = Z 2 /Z A 1 = A 2 Q Q >0 Z 2 /A Z2 /A > 0.35 (4.32) 2b surf /b Coul 50 Z 2 /A > 18 4.10 half life [ y ] 10 20 232 Th 230 spontaneous fission 234 10 15 238 U 236 232 242 10 10 238 Pu 244 240 236 Cm Z = 90 Thorium 246 242 10 5 244 240 Z = 92 Uranium 250 248 Z = 94 Plutonium 246 Z = 96 Curium 252 Cf 10 0 Z = 98 Californium 254 254 Z = 100 Fermium Fm 10-5 256 34 35 36 37 38 39 40 Z 2 / A 4.10: 90 Z 100

68 4 4.6 10 MeV M(Eλ) = ρ(r) r λ Y λµ ( r)dr 1 (4.33) M(Mλ) = j(r) (r ) r λ Y λµ ( r)dr c(λ +1) M(Eλ) ρ(r) M(Mλ) c 1/2 J 1 J 2 hcq T (E(M)λ) = B(E(M)λ) = 8π(λ +1) q 2λ+1 λ[(2λ + 1)!!] 2 h B(E(M)) (4.34) 1 2J 1 +1 J 2 M(E(M)λ) 2 B(E(M)λ) λ J 1 J 2 λ J 1 + J 2 (4.35) Eλ ( 1) λ Mλ ( 1) λ+1 λ 1 + 2 E1 M2 E3 E1 1 + 2 + M1 E2 M3 M3

4.7 69 4.7 10 22 s 6000 4.11 [4] 140 120 100 proton number Z 80 60 40 20 0 0 20 40 60 80 100 120 140 160 180 200 neutron number N 4.11:

70 4 [ 5-20 ] [4]

4.8 4 71 4.8 4 1. D.E. Groom et al., European Physical Journal C15 (2000) 1, available on the Particle Data Group WWW page (URL http://pdg.lbl.gov ) 2. Table of Isotopes, Eighth Edition, R.B. Firestone, Ed. V.S. Shirley, (John Wiley and Sons, Inc., New York, 1996) 3. Ajzenberg-Selove, Nucl. Phys. A490 (1988) 1 4. H. Koura, M. Uno, T. Tachibana and M. Yamada, Nucl. Phys. A674 (2000) 47, Nuclear mass formula with shell energies obtained by a new method and its application to superheavy elements 5. P.E. Austein, Atomic Data and Nuclear Data Tables, 39 (1988) 185, An Overview of the 1986-1987 atomic mass prediction 6. A. Pape and M.S. Antony, Atomic Data and Nuclear Data Tables, 39 (1988) 201, Masses of proton-rich T z < 0 nuclei via the isobaric mass equation 7. G. Dussel, E. Caurier and A.P. Zucker, Atomic Data and Nuclear Data Tables, 39 (1988) 205, Mass predictions based on α-line systematics 8. P. Möller and J.R. Nix, Atomic Data and Nuclear Data Tables, 39 (1988) 213, Nuclear masses from a unified macroscopic-microscopic model 9. P.Möller, W.D. Myers, W.J. Swiatecki and J.Treiner, Atomic Data and Nuclear Data Tables, 39 (1988) 225, Nuclear mass formula with a finite-range droplet model and a folded-yukawa single-particle potential 10. E. Comay, I. Kelson and A. Zidon, Atomic Data and Nuclear Data Tables, 39 (1988) 235, Mass predictions by modifed ensemble averaging 11. L. Satpathy and R.C. Nayak, Atomic Data and Nuclear Data Tables, 39 (1988) 241, Masses of atomic nuclei in the infinite nuclear matter model 12. T. Tachibana, M. Uno, M. Yamada and S. Yamada, Atomic Data and Nuclear Data Tables, 39 (1988) 251, Empirical mass formula with proton-neuton interaction 13. L. Spanier and S.A.E. Johansson, Atomic Data and Nuclear Data Tables, 39 (1988) 259, A modified Bethe-Weizsäcker mass formula with deformation and shell corrections and few free parameters 14. J. Jänecke and P.J. Masson, Atomic Data and Nuclear Data Tables, 39 (1988) 265, Mass predictions from the Garvey-Kelson mass relations 15. P.J. Masson and J. Jänecke, Atomic Data and Nuclear Data Tables, 39 (1988)

72 4 273, Masses from an inhomogeneous partial differential equation with higher order isospin contributions 16. A.H. Wapstra, G. Audi and R. Heokstra, Atomic Data and Nuclear Data Tables, 39 (1988) 281, Atomic masses from (mainly) experimental data 17. P. Möller, J.R. Nix, W.D. Myers and W.J. Swiatecki, Atomic Data and Nuclear Data Tables, 59 (1995) 185, Nuclear ground-state masses and deformations 18. Y. Aboussir, J.M. Pearson, A.K. Dutta and F. Tondeur, Atomic Data and Nuclear Data Tables, 61 (1995) 127, Nuclear mass formula via an approximation to the Hartree-Fockmethod 19. G.A. Lalazissis, S. Raman an P. Ring, Atomic Data and Nuclear Data Tables, 71 (1999) 1, Ground-state properties of even-even nuclei in the relativistic mean-field theory 20. R.C. Nayakand L. Satpathy, Atomic Data and Nuclear Data Tables, 73 (1999) 213, Mass predictions in the infinite nuclear matter model