Similar documents
II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

24.15章.微分方程式

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Part. 4. () 4.. () Part ,

201711grade1ouyou.pdf

入試の軌跡


Part () () Γ Part ,

橡Taro11-卒業論文.PDF

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

1.1 ft t 2 ft = t 2 ft+ t = t+ t d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

4

熊本県数学問題正解

CRA3689A

6. [1] (cal) (J) (kwh) ( ( 3 t N(t) dt dn ( ) dn N dt N 0 = λ dt (3.1) N(t) = N 0 e λt (3.2) λ (decay constant), λ [λ] = 1/s

(Frequecy Tabulatios)

a, b a bc c b a a b a a a a p > p p p 2, 3, 5, 7,, 3, 7, 9, 23, 29, 3, a > p a p [ ] a bp, b p p cq, c, q, < q < p a bp bcq q a <

Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved.

1 1 ( ) ( % mm % A B A B A 1

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

H22環境地球化学4_化学平衡III_ ppt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

基礎数学I

untitled

日本内科学会雑誌第98巻第3号

30 (11/04 )

,..,,.,,.,.,..,,.,,..,,,. 2

JMP V4 による生存時間分析

ii

Fig V 2.3.3


( )

( ) ( ) ( ) ( ) PID

I [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X X n ): µ X N(µ, σ 2 /n) Z = X µ σ/ n N(, 1) < α < 1/2 Φ(z) =.5 α z α


tokei01.dvi

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

第85 回日本感染症学会総会学術集会後抄録(I)

46 Y Y Y Y 3.1 R Y Figures mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y Y Figure 5-

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

本文/020:デジタルデータ P78‐97

(1) (2) (3) (4) 1

N88 BASIC 0.3 C: My Documents 0.6: 0.3: (R) (G) : enterreturn : (F) BA- SIC.bas 0.8: (V) 0.9: 0.5:

I ( ) 2019

2 p T, Q


日本内科学会雑誌第101巻第12号

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

i s

確率論と統計学の資料

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

記号と準備

2011de.dvi

地域総合研究第40巻第1号

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

untitled


DSGE Dynamic Stochastic General Equilibrium Model DSGE 5 2 DSGE DSGE ω 0 < ω < 1 1 DSGE Blanchard and Kahn VAR 3 MCMC


24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

renshumondai-kaito.dvi

構造と連続体の力学基礎

calibT1.dvi

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1


8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

h = h/2π 3 V (x) E ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 関 数 値

第85 回日本感染症学会総会学術集会後抄録(III)

0 (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4

vp

genron-3

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

2000年度『数学展望 I』講義録

dプログラム_1


IS-LM (interest) 100 (net rate of interest) (rate of interest) ( ) = 100 (2.1) (gross rate of interest) ( ) = 100 (2.2)

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

放射線専門医認定試験(2009・20回)/HOHS‐01(基礎一次)

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

資料 5 品質管理分野テキスト

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,, r + r

untitled

example2_time.eps

A B 5 C mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

meiji_resume_1.PDF



) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

Ł\”ƒ-2005

, , 3.5. 縺1846 [ ィ , ィ , ,

Note5.dvi

Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

Transcription:

2002 7

i 1 1 2 3 2.1............................. 3 2.1.1....................... 5 2.2............................ 5 2.2.1........................ 6 2.2.2.................... 6 2.3........................... 7 2.3.1.................... 7 2.3.2....................... 9 2.3.3.......................... 10 2.3.4 (mean time to failure)............. 12 2.3.5.................... 13 2.3.6................... 14 2.3.7 (mean time between failures)......... 14 2.4.................... 16

iv 2.5....................... 19 3 21 3.1............................. 21 3.2............................. 24 3.3........................... 25 3.4........................... 27 4 31 4.1.......................... 31 4.2.................. 34 4.3....................... 37 4.3.1........... 37 4.3.2................ 38 4.4....................... 42 4.4.1 100%.......... 42 4.4.2.............. 47 4.4.3................ 49 5 51 5.1.......................... 51 5.2...................... 54 5.3...................... 55 6 59 6.1............................ 59 6.2............................. 61 6.2.1....................... 63

v 6.2.2.......................... 67 6.2.3................. 68 6.2.4....................... 70 6.2.5................ 71 6.2.6.................... 72 7 75 7.1.......................... 75 7.2.......................... 77 8 83 8.1.................... 83 8.1.1 substandard standard.... 85 8.1.2.................... 86 8.1.3....................... 87 8.1.4.................... 89 8.2....................... 90 9 93 9.1........................... 93 9.2........................ 97 9.3............................... 98 10 101 10.1 FMEA (failure Mode and Effects Analysis)........... 101 10.2 FTA (Failure Test Analysis).................... 106 10.3........................ 110

vi 11 113 11.1.......................... 113 11.2........................ 117 11.3................................ 117 12 125 12.1............................. 125 12.1.1........................ 126 12.1.2....................... 128 12.1.3............................ 129 12.2............................ 129 12.3...................... 137 12.3.1................... 137 12.3.2................... 139 12.4............................... 139 12.4.1........................ 140 12.4.2........................ 140 12.5........................... 141 12.5.1............................ 141 12.5.2.......................... 142 12.5.3........................ 142 12.5.4.................... 142 A 145 A.1................................ 145 A.2................................ 148 A.3................................ 151 A.3.1.......................... 151

vii A.3.2......................... 152 A.3.3........................ 155 A.4................................ 156 159

2.1........................... 4 2.2 R(t), (t)................... 11 2.3...................... 17 4.1.................... 41 4.2...................... 42 4.3.................... 48 5.1................................. 52 5.2.......................... 52 5.3............................. 54 5.4........................... 55 5.5....................... 56 6.1............................ 60 6.2.......................... 62 6.3................. 64 6.4.................. 65 6.5 a prior probability of failure................... 66 6.6....................... 69 7.1 m > M........................... 76 7.2 m < M........................... 76

x 7.3 T 0........................ 77 7.4.............. 78 7.5.......................... 78 7.6........................... 79 7.7........................... 80 8.1 substandard standard............... 85 8.2................... 86 8.3.................... 89 10.1.................... 108 10.2.................... 109 10.3............................ 109 10.4........................ 109 11.1........................... 118 11.2....................... 119 11.3................. 120 11.4................. 121 11.5....................... 122 11.6............................. 123 11.7 2SC1815............................. 124 12.1............... 127 12.2...................... 130 12.3............................. 132 12.4............................ 133 12.5................. 134 12.6................... 135 12.7............................. 136 12.8........................... 136

xi 12.9........................... 138 12.10........................... 140

2.1.................... 16 4.1............................... 36 10.1 C 1............................ 104 10.2 C 2............................ 104 10.3 C 3............................ 105 10.4 C S....................... 105 11.1............................... 115 11.2........................... 115 12.1........................... 126 12.2............................... 137 12.3........................ 139

1 AGREE(Advisory Group on Reliability of Electronic Equipment) Symposium on physics of failure in electronics IEC(International Electrotechnical Commission)

2 1 9000

2 3 2.1 2.1 6 (Initial Failure) (Wearout failures) (Chance failures)

4 2 2.1: 1. 2.

2.2. 5 6 2.1.1 Reliability is the probability of a device performing its purpose adequately for the period of time intended under the operating conditions encountered 2.2 X Y P(A) = X X +Y P(B) = Y X +Y (2.1) (2.2)

6 2 2.2.1 : P(A) 0 (2.3) : P(S) = 1 S (2.4) : P ( ) A n = P(A n ) (2.5) N n = 1, 2,, N N S A m A n 0 m n 2.2.2 F(x) = P(X x) (2.6)

2.3. 7 F( ) = 0 (2.7) F( ) = 1 (2.8) 0 F(x) 1 (2.9) x 1 < x 2 F(x 1 ) F(x 2 ) (2.10) P(x 1 < X x 2 ) = F(x 2 ) F(x 1 ) (2.11) F(x + ) = F(x) (2.12) (2.7)(2.8)(2.10)(2.12) 2.3 2.3.1 N s N f N 0 N 0 N s + N f = N 0 (2.13) N s N 0 + N f N 0 = 1 (2.14) N s N 0 = A 1, N f N 0 = A 2 (2.15) (2.3)(2.4)(2.5)

8 2 R(t) N 0 N s (t) R(t) = N s(t) N 0 (2.16) N s (t) N 0 R(0) = 1 (2.17) R( ) = 0 (2.18) N f (t) Q(t) = N f (t) N 0 (2.19) (2.14) R(t), Q(t) R(t) + Q(t) = 1 (2.20)

2.3. 9 1. 2. 3. 1. 2. 3. 2.3.2 q(t) = dq(t) [ dr(t) ] dt dt (2.21) t Q(t) = q(t)dt (2.22) 0 (2.22) (2.7) (2.12) (2.22)

10 2 (2.21) Q(t + dt) Q(t) q(t) = dt = N f (t + dt) N f (t) N 0 dt (2.23) (2.21) t Q(t) = q(t)dt (2.24) 0 (2.22) t R(t) = 1 = = 0 t 0 q(t)dt q(t)dt t 2.2 0 q(t)dt q(t)dt (2.25) 2.3.3 t N s t +dt N s (t +dt) N s (t) N s (t + dt) t

2.3. 11 2.2: R(t), (t) t + dt λ λ = N s(t) N s (t + dt) dt N s (t) = dn s(t) dt N s (t) = dn f (t) dt N s (t) (2.26) t λ = λ 0 (2.26) dn s (t)/(n s dt) = λ 0 d (lnn s ) = λ 0 dt lnn s = λ 0 t +C t = 0 N s (t) = N 0 lnn s = λ 0 t + lnn 0 then λ 0 = 1 ln t ( Ns N 0 ) = 1 ln R(t) (2.27) t

12 2 (2.26) N 0 (2.16)(2.19)(2.21) λ(t) = q(t) R(t) (2.28) (2.21) (2.28) λ(t)dt = dr(t) R(t) R(t) = exp [ ] λ(t)dt (2.29) (2.30) (2.30) R(t) = exp( λt) (2.31) (2.27) (2.30) λ 2.3.4 (mean time to failure) MTTF t N f (t) dt N f (t + dt) N f (t + dt) N f (t) t t + dt dt N f (t + dt) N f (t) dt t t t + dt t [ Nf (t + dt) N f (t) ] t

2.3. 13 N 0 1 N 0 [ Nf (t + dt) N f (t) ] t d(mt T F) = [ Nf (t + dt) N f (t) ] [ t = N f (t) + dn ] f (t) dt N f (t) t dt N 0 d(mt T F) = t dn f (t) dt = tq(t)dt N 0 dt MTTF (MT T F) = tq(t)dt (2.32) 0 (2.16) 2.3.5 (MT T F) = 0 R(t)dt = 1 N s (t)dt (2.33) N 0 (2.30) H(t) 0 R(t) = exp[ H(t)] (2.34) t H(t) = λ(t)dt (2.35) 0

14 2 2.3.6 t N s (t) t T = tn s (t)dt (2.36) 3 1. 2. 3. 2.3.7 (mean time between failures) MTBF (MT BF) = N s (t)dt N s (t) N s (t + dt) (2.37)

2.3. 15 t N s (t) dt [N s (t) N s (t + dt)] MTBF (2.26) MTBF λ (MT BF) = 1 λ (2.38) MTBF (2.28) (2.21) (MT BF) = 1 λ = R(t) q(t) q(t) = dr(t) dt R(t) (MT BF) = 1 [ t ] 1 q(t)dt q(t) 0 (2.39) λ MTTF MTBF (2.33) (2.30) λ (MT T F) = 0 exp( λt)dt = 1 = (MT BF) (2.40) λ (2.33)(2.40) (MT BF) = R(t)dt (2.41) 0 useful life (2.30) R(t) = exp( λt)

16 2 m (2.41) ( R(t) = exp t ) m (2.42) t = m R = 0.368 m 2.3 2.4 m λ (2.42) R(t) = 1 t m (2.43) Q(t) = t m (2.44) (t) (R) (Q) m/10 0.9 0.1 m/100 0.99 0.01 m/1, 000 0.999 0.001 m/10, 000 0.9999 0.0001 m/100, 000 0.99999 0.00001 m/1, 000, 000 0.999999 0.000001 m/10, 000, 000 0.9999999 0.0000001 2.1: < > 1 0.999999 1,000,000 0.9999 10,000

2.4. 17 2.3:

18 2 < > 10,000 10 0.999 100 0.99 < > 1 3 n MTBF m 3 ( R(t) = 1 t ) n m = 1 n m t (2.45) Q(t) = n m t (2.46) n MTBF (2.46) Q(t) = n m t, Q (t) = n m t (2.47) Q(t) = n n Q (t) (2.48) < > (2.45) (2.48)

2.5. 19 t = m/1000 0.999 t = m/1000 1000 999 1 (2.45) (2.48) < > 1 MTBF m 1 100 MTBF (2.47) m system = m/100 t = m/100,000 100 (2.47) Q(t) = 100 ( ) m = 0.001 m 100, 000 t = m/100,000 0.999 10 t = m/100,000 Q(t) = 10 ( ) m = 0.0001 m 100, 000 0.9999 m system = m/10 n m m/n 2.5

20 2 m mean number of cycles between failure failure rate per one operating cycles ( R(c) = exp( λc) = exp c ) m (2.49) λ R(c) = 1 λc (2.50)

3 3.1 2 2 (2.20) (2.31) Q(t) = 1 exp( λt) (3.1)

22 3 q(t) = λ exp( λt) (3.2) λ t λ t λ t +t R(t) = exp( λ t )exp( λ t ) = exp [ (λ t + λ t ) ] (3.3) < > (3.3) tq(t) (2.32) MTTF 0 tq(t)dt = (MT T F) (3.4) (MTBF)=(MTTF) (2.40)

3.1. 23 MTBF (2.41) m = R(t)dt = exp( λt)dt = 1 (3.5) 0 0 λ (3.4) ( m = tq(t)dt = t dr ) dt (3.6) 0 0 dt m = [tr(t)] 0 + R(t)dt 1 ( ) R(t) = exp λdt 0 lim tr(t) t = t lim t exp ( t 0 λdt) = 0 λ 0 λ 1/m q(t) = λ exp( λt) = 1 ( m exp t ) m ( Q(t) = 1 exp t ) m ( R(t) = exp t ) m (3.7) (3.8) (3.9)

24 3 λ 1, λ 2 MTBF m 1, m 2 R(t) = R 1 (t) R 2 (t) = exp[ (λ 1 + λ 2 )t] [ ( 1 = exp + 1 ) ] t m 1 m 2 (3.4) 2 2 t = t +t R(t) = exp [ λ(t +t ) ] (3.10) 3.2 1 λ(t) = at (3.11) (2.20)(2.30) ) R(t) = exp ( at2 2 ) Q(t) = 1 exp ( at2 2 (3.12) (3.13)

3.3. 25 MTBF m m q(t) = Aexp [ a(t m) 2] (3.14) MTBF MTBF (3.14) σ (3.14) q(t) = 1 ] [ σ 2π exp (t m)2 2σ 2 (2.21) Q(t) = 1 σ 2π t 0 = 1 1 σ 2π exp [ t (t m)2 2σ 2 exp [ ] dt (t m)2 2σ 2 (3.15) ] dt (3.16) 1 R(t) = 1 σ exp [ 2π t 3.3 (t m)2 2σ 2 ] dt (3.17) exp( x) exp(x) = 1 (3.18)

26 3 n k ( ) n f (k) = p k (1 p) n k (3.19) k p m = np (3.19) n(n 1) [n (k 1)] ( m ) k ( f (k) = 1 m ) n k k! n n ( = mk 1 1 )( 1 2 ) ( 1 k 1 )[ ( 1 m ) n/m] m ( 1 m ) k k! n n n n n (3.20) n ( 1 1 n = exp n) lim n (3.20) f (k) = mk exp( m) (3.21) k! k (3.21) ) exp( m) (1 + m + m2 2! + m3 3! + = 1 (3.22) (3.18) (3.22) (3.21) k m A (3.22) exp( m) mexp( m)

3.4. 27 ( m 2 /2! ) exp( m) λ t R(t) = exp( λt) (3.23) t Q 1 (t) = (λt)exp( λt) (3.24) 2 Q 2 (t) = (λt)2 2! exp( λt) (3.25) Q(t) Q = Q 1 + Q 2 + Q 3 + = 1 R = 1 exp( λt) (3.26) 3.4 (Weibull) [ ( ) t γ m ] R(t) = exp η m η = t 1/m 0 (3.27)

28 3 γ µ σ γ = 0 ( σ 2 (t) = η [Γ 2 1 + 2 m ( µ(t) = ηγ ) 1 + 1 m )] ) Γ 2 ( 1 + 1 m (3.28) (3.29) Γ (3.27) m = 1 (3.27) 2 1 lnln R(T ) = m lnt lnt 0 = m(lnt ln η) (3.30) y = lnln 1 R(t) (3.31) x = lnt (3.32) a = lnt 0 = mlnη (3.33) (3.30) y = mx + a (3.34)

3.4. 29 (3.32) x (3.31) y y x m a = lnt 0 = mlnη m x = 1, y = 0 y = m(x 1) x = 0 y lnt = 1 lnln1/r = 0 lnt = 0 lnln1/rt ln(t 0 ) η (3.33) m, η (3.28)(3.29)

30 3

4 4.1 1. 2. 1.

32 4 2. 3. 1. 2. 1. P(A), P(B) A, B P(A B) = P(A) P(B) (4.1) 2. A, B AB P(A B) = P(A) + P(B) P(A) P(B) (4.2)

4.1. 33 3. P(A B) = P(A) + P(B) (4.3) 4. A, B P(A) + P(B) = 1 (4.4) A, B A, B A, B P(A), P(B) A, B A, B N s N 0 1 N s /N 0 R + Q = 1 (4.5) (4.4)

34 4 R 1 R 2 t (4.1) R S (t) = R 1 (t)r 2 (t) (4.6) (4.2) Q S (t) = Q 1 (t) + Q 2 (t) Q 1 (t)q 2 (t) (4.7) (4.5) Q S (t) = [1 R 1 (t)] + [1 R 2 (t)] [1 R 1 (t)][1 R 2 (t)] = 1 R 1 (t)r 2 (2) = 1 R S (t) (4.8) (4.2) R p (t) = R 1 (t) + R 2 (t) R 1 (t)r 2 (t) (4.9) (4.2) Q p (t) = Q 1 (t)q 2 (t) (4.5) Q p (t) = [1 R 1 (t)][1 R 2 (t)] = 1 R p (t) (4.10) 4.2 R S (t) + Q S (t) = 1 (4.11)

4.2. 35 R S (t), Q S (t) R p (t) + Q p (t) = 1 (4.12) R p (t), Q p (t) R S (t) = exp[ (λ 1 + λ 2 )t] (4.13) Q S (t) = 1 exp[ (λ 1 + λ 2 )t] (4.14) R p (t) = exp( λ 1 t) + exp( λ 2 t) exp[ (λ 1 + λ 2 )t] (4.15) Q p (t) = [1 exp( λ 1 t)][1 exp( λ 2 t)] (4.16) R S = R 1 R 2 R n (4.17) R i Q p = Q 1 Q 2 Q n (4.18)

36 4 < > 4 10 20 10 λ t = 0.00001 λ d = 0.000002 λ r = 0.0000001 λ c = 0.0000002 4.1: λ i = 4λ t + 10λ d + 20λ r + 10λ c = 0.0001 R S (t) = exp( 0.0001 t) 10 R S (10) = exp( 0.0001 10) = 0.999 10 1,000 999 0.0001 m = 1/λ = 10,000 [ ] 10,000 10,000 e 1 = 0.37 37 [%] 63 [%] 1) 1)

4.3. 37 4.3 4.3.1 λ 1, λ 2 (4.15)(4.16) R p2 (t) = exp( λ 1 t) + exp( λ 2 t) exp[ (λ 1 + λ 2 )t] (4.19) Q p2 (t) = [1 exp( λ 1 t)][1 exp( λ 2 t)] (4.20) (3.5) m p2 = R p (t)dt = 1 + 1 1 (4.21) 0 λ 1 λ 2 λ 1 + λ 2 λ 1, λ 2, λ 3 R p3 (t) = exp( λ 1 t) + exp( λ 2 t) + exp( λ 3 t) exp[ (λ 1 + λ 2 )t] exp[ (λ 2 + λ 3 )t] exp[ (λ 3 + λ 1 )t] + exp[ (λ 1 + λ 2 + λ 3 )t] (4.22) Q p3 (t) = [1 exp( λ 1 t)][1 exp( λ 2 t)][1 exp( λ 3 t)] (4.23) MTBF m p3 = 0 R p (t)dt = 1 + 1 + 1 1 1 1 1 λ 1 λ 2 λ 3 λ 1 + λ 2 λ 2 + λ 3 λ 2 + λ 3 λ 3 + λ 1 1 (4.24) λ 1 + λ 2 + λ 3

38 4 1 R 1 = exp( λ 1 t), R 2 = exp( λ 2 t), R 3 = exp( λ 3 t) (4.25) Q 1 = 1 exp( λ 1 t), Q 2 = 1 exp( λ 2 t), Q 3 = 1 exp( λ 3 t) (4.26) (4.19)(4.20) R p2 + Q p2 = 1 = R 1 + R 2 R 1 R 2 + Q 1 Q 2 = R 1 (R 2 + Q 2 ) + R 2 (R 1 + Q 1 ) R 1 R 2 + Q 1 Q 2 = R 1 R 2 + R 1 Q 2 + R 2 Q 1 + Q 1 Q 2 = (R 1 + Q 1 )(R 2 + Q 2 ) (4.27) (4.22)(4.23) 1 = (R 1 + Q 1 )(R 2 + Q 2 )(R 3 + Q 3 ) (4.28) n 1 = (R 1 + Q 1 )(R 2 + Q 2 )(R 3 + Q 3 ) (R n + Q n ) (4.29) 4.3.2 R p2 = 1 Q p2 = 1 [1 exp( λt)] 2 = 2 exp( λt) exp( 2λt) (4.30) Q p2 = Q 1 Q 2 = Q 2 = [1 exp( λt)] 2 (4.31)

4.3. 39 m p2 = 1 λ 1 2λ = 3 2λ (4.32) R p3 = 1 Q p3 = 3exp( λt) 3exp( 2λt) + exp( 3λt) (4.33) Q p3 = Q 3 = [1 exp( λt)] 3 (4.34) MTBF m p3 = 3 λ + 3 2λ + 1 3λ = 29 6λ (4.35) n (4.29) (R + Q) n = R n + nr n 1 Q + n(n 1) R n 2 Q 2 + + Q n = 1 (4.36) 2! (4.36) (R + Q) 3 = R 3 + 3R 2 Q + 3RQ 2 + Q 3 = 1 (4.37) Q 3 Q p = Q 3 (4.38) R p = R 3 + 3R 2 Q + 3RQ 2 (4.39)

40 4 < > Q p = 3RQ 2 + Q 3 (4.40) R p = R 3 + 3R 2 Q (4.41) λ = 0.01 10 R = exp( 0.1) = 0.90484 Q = 1 R = 1 0.90484 = 0.09516 Q p = Q 3 = (0.09516) 3 = 0.000862 R p = 1 Q p = 1 0.000862 = 0.999138 m p = 3 λ + 3 2λ + 1 3λ = 300 + 150 + 33 = 483 483 4.1 < >

4.3. 41 4.1: λ i λ = λ i = 0.0005 10 R = exp( 0.0005 10) = 0.995012 R p = R 3 + 3R 2 Q = 3R 2 2R 3 = 0.999926

42 4 4.4 4.2 4.2: 4.4.1 100% n+1

4.4. 43 ] exp( λt) [1 + λt + (λt)2 + (λt)3 + = 1 (4.42) 2! 3! exp( λt) exp( λt) (λt) 1 exp( λt)(λt) 2 /2! 2 1 1 1 R 2 (t) = exp( λt) + exp( λt) (λt) (4.43) Q 2 (t) = 1 R(t) = exp( λt) (λt)2 2! + exp( λt) (λt)3 3! + (4.44) 3 1 2 R 3 (t) = exp( λt) + exp( λt) (λt) + exp( λt) (λt)2 2! Q 3 (t) = 1 R(t) = exp( λt) (λt)3 3! + exp( λt) (λt)4 4! (4.45) (4.46) MTBF 2 m 2 = R 2 dt = 1 0 λ + λ λ 2 = 2 λ (4.47) 3 m 3 = 1 λ + 1 λ + 1 λ = 3 λ (4.48)

44 4 ] R n (t) = exp( λt) [1 + (λt) + (λt)2 + + (λt)n 1 (4.49) 2! (n 1)! [ ] (λt) n Q n (t) = exp( λt) + (λt)n+1 (4.50) n! (n + 1)! < > m n = n λ (4.51) 2 10 2 λ = 0.01 R b = exp( λt) + exp( λt) (λt) = 0.90484 + 0.90484 0.1 = 0.995324 1 0.90484 R P = 1 (1 0.90484) 2 = 0.990945 (2.21) q = dr(t) dt (4.52) q(t) = λ exp( λt) (4.53) λ 1, λ 2 2 λ 1 λ 2 t 1

4.4. 45 t 2 = t t 1 2 q 1 (t 1 ) = λ 1 exp( λ 1 t 1 ) (4.54) 2 q 2 (t 2 ) = λ 2 exp[ λ 2 (t t 1 )] (4.55) (2.21) dr = q(t)dt (4.54) dr 1 = q 1 (t 1 )dt 1 (4.55) dr 2 = q 2 (t 2 )dt 2 dr dr = dr 1 dr 2 = q 1 (t 1 )dt 1 q 2 (t 2 )dt 2 dr(t) = q 1 (t 1 )q 2 (t t 1 )dt 1 (dt dt 1 ) = q 1 (t 1 )q 2 (t t 1 )dt 1 dt q(t) = dr(t) = q 1 (t 1 )q 2 (t t 1 )dt 1 (4.56) dt t 1 2 t q(t) = q 1 (t 1 )q 2 (t t 1 )dt 1 (4.57) 0 q 1, q 2 q(t) 5 2

46 4 t q(t) = λ 1 λ 2 exp( λ 1 t 1 )exp[ λ 2 (t t 1 )]dt 1 = 0 λ 1 λ 2 λ 2 λ 1 [exp( λ 1 t) exp( λ 2 t)] (4.58) MTBF (2.25)(2.41) R b (t) = m p = t q(t)dt = exp( λ 1 t) + λ 1 [exp( λ 1 t) exp( λ 2 t)] (4.59) λ 2 λ 1 0 R b (t)dt = 1 λ 1 + 1 λ 2 = m 1 + m 2 (4.60) (4.59)(4.60) λ 1 λ, λ 2 λ + x x (4.43)(4.47) 3 1 2 q 1 (t 1 ) = λ 1 exp( λ 1 t 1 ) q 2 (t 2 ) = λ 2 exp( λ 2 t 2 ) (4.61) q 3 (t 3 ) = λ 3 exp( λ 3 t 3 ) t 2 = t t 1 0 t 1 t 2 (4.62) t 3 = t t 2 0 t 2 t 3 (4.63) q(t) = λ 1 λ 2 λ 3 t t 2 =0 t2 t 1 =0 exp( λ 1 t 1 )exp[ λ 2 (t 2 t 1 )]exp[ λ 2 (t t 2 )]dt 1 dt 2 (4.64)

4.4. 47 (2.25) R b = λ 2 λ 3 exp( λ 1 t) (λ 2 λ 1 )(λ 3 λ 1 ) + λ 1λ 3 exp( λ 2 t) (λ 1 λ 2 )(λ 3 λ 2 ) + λ 1λ 2 exp( λ 3 t) (λ 1 λ 3 )(λ 2 λ 3 ) n (4.65) R b = λ 2 λ 3 λ n exp( λ 1 t) (λ 2 λ 1 )(λ 3 λ 1 ) (λ n λ 1 ) λ 1 λ 3 λ n exp( λ 2 t) + (λ 1 λ 2 )(λ 3 λ 2 ) (λ n λ 2 ) + λ 1 λ 2 λ n 1 exp( λ n t) + (λ 1 λ n )(λ 2 λ n ) (λ n 1 λ n ) (4.66) MTBF m p = 1 λ 1 + 1 λ 2 + + 1 λ n (4.67) 4.4.2 100 [%] 100 [%] R ss 1 R b (t) = exp( λt) + R ss exp( λt) λt (4.68) 2 R b (t) = exp( λ 1 t) + R ss λ 1 λ 2 λ 1 [exp( λ 1 t) exp( λ 2 t)] (4.69)

48 4 λ 1 λ 2 λ 3 2 R b (t) = exp( λ 1 t) + λ 1 λ 1 + λ 3 λ 2 {exp( λ 2 t) exp[ (λ 1 + λ 3 )t]} (4.70) R b (t) = exp( λt) + R ss λ 1 λ 1 + λ 3 λ 2 {exp( λ 2 t) exp[ (λ 1 + λ 3 )t]} (4.71) < > λ 1 = 0.0002 λ 2 = 0.001 1 R ss = 0.99 4.3: t = 10 0.0002 R b = exp( 0.0002t) + 0.99 [exp( 0.0002t) exp( 0.001t)] 0.001 0.0002 = 0.998 + 0.2475 0.008 = 0.99998 100,000 2 R = 1 [1 exp( 0.0002t)] 2 = 0.9999960

4.4. 49 MTBF m b = = 0 0 R b dt { } λ 1 exp( λ 1 t) + exp( λt) [exp( λ 1 t) exp( λ 2 t)] dt λ 2 λ 1 ( 1 λ 1 + λ 1 ) (4.72) λ 2 + λ = 1 λ 1 + λ 1 λ 2 λ 1 λ 0.0002 MTBF 5000 5000 1 5,000 1 0.99 λ = ln0.99 5000 = 0.000002 MTBF 5988 4.4.3 N λ n N (n + 1) λ Nλ MTBF 1/(Nλ) n n MTBF 1/(Nλ) n + 1 (n +1)/Nλ

50 4 ( R S (t) = exp Nλ ) n + 1 t (4.73) < > 30 λ = 0.001 10 R = exp( 0.001 30 10) = 0.74082 3 (4.73) ( ) 0.001 30 R = exp 10 = 0.925 3 + 1

5 5.1 5.1 A C B C A A B B A-A C-A C-B B-B 5.2 A B C A B 4

52 5 5.1: 5.2: R = [1 (1 R A )(1 R B )(1 R C )][1 (1 R A )(1 R B )] 5.1 1 P(A) = P(A B i )P(B i ) + P(A B j )P(B j ) (5.1)

5.2. 53 P(system f ailure i f component X is good) P(X is good) + P(system f ailure i f component is bad) P(X is bad) (5.2) Q S R x X Q x (5.2) Q S = Q S (i f X is good) R x + Q S (i f X is bad) Q x (5.3) R S = 1 Q S (5.4) 5.1 X C Q S = Q S (i f C is good) R C + Q S (i f C is bad) Q C (5.5) C A, B A, B C Q S (i f C is good) = (1 R A )(1 R B ) (5.6) C A A, B B C Q S (i f C is bad) = (1 R A R A )(1 R B R B ) (5.7) Q S = (1 R A )(1 R B ) R C + (1 R A R A )(1 R B R B ) Q C (5.8)

54 5 5.3: 5.2 (5.3) 5.3 R 1, R 2 1 X R 2 Q S = (1 R 1 ) R 2 + 1 (1 R 2 ) (5.9) X 2 X X 1 1 2 X 1 (1 R 2 ) 2 1 1 1 1 R 1 + Q 1 (5.9) (1 R 1 ) R 2 + 1 (1 R 2 ) = R 2 R 1 R 2 + 1 R 2 = 1 R 1 R 2 (5.10)

5.3. 55 5.3 5.4 5.4: Q S = 0 R 2 + (1 R 1 )(1 R 2 ) (5.11) 0 R 2 2 1 1 2 2 1 1 1 (5.11) 3 4 4 R 1, R 2, R 3, R 4

56 5 5.5:

5.3. 57 1 Q S = Q S (i f 1 is good) R 1 + Q S (i f 1 is bad) Q 1 (5.12) 1 1 1 Q S (i f 1 is good) Q S (i f 1 is bad) 2 Q S (i f 1 is bad) = Q S (i f 2 is good) R 2 + Q S (i f 2 is bad) Q 2 (5.13) 1 (5.13) Q S (i f 1 is bad) = Q S (i f 2 is bad) Q 2 (5.14) 1 (5.13) Q S = Q S (i f 2 is bad) Q 2 Q 1 (5.15) Q S = Q 1 Q 2 Q 3 Q 4 (5.16) 4 4 3 Q S = Q S (i f 1 is good) R 1 + Q S (i f 1 is bad) Q 1 (5.17) 1 1

Q S = 1 R 1 R 2 R 3 R 1 R 2 R 4 R 1 R 3 R 4 R 2 R 3 R 4 + 3R 1 R 2 R 3 R 4 (5.20) main : 2005/4/26(22:28) 58 5 (5.17) Q S (i f 1 is good) = Q S (i f 2 is good) R 2 + Q S (i f 2 is bad) Q 2 = (1 R 3 )(1 R 4 ) R 2 + (1 R 3 R 4 ) Q 2 (5.18) 1 2 3 4 2 2 1 3 4 1 Q S (i f 1 is bad) Q S (i f 1 is bad) = Q S (i f 2 is good) R 2 + Q S (i f 2 is bad) Q 2 = (1 R 3 R 4 )R 2 + 1 Q 2 (5.19) 1 2 3 4 2 4 (R 1 + Q 1 )(R 2 + Q 2 )(R 3 + Q 3 )(R 4 + Q 4 ) = 1

6 6.1 2 3 3 2

60 6 2 6.1 3 1. DFR(decreasing failure rate) 2. CFR(constant failure rate) 3. IFR(increasing failure rate) 6.1 6.1:

6.2. 61 6.2 6.1 q(t ) = 1 ] [ σ 2π exp (T M)2 2σ 2 (6.1) M σ T M MTBF MTBF MTBF MTBF 6.2 MTBF MTBF 63 [%] 37 [%]

62 6 6.2:

6.2. 63 T t 6.2 a priori probability of failure t 1 t 2 T 1 T 2 P t2 t 1 = P T2 T 1 = t2 t 1 q(t)dt (6.2) T2 T 1 q(t )dt (6.3) t t Q(t) = q(t)dt (6.4) 0 6.3 6.4 (6.1) 6.5 6.2.1 6.5 2.14 [%] 2.14[%] T = 0 T = M 3σ 99.865 [%] T = 0 T = M + 3σ 2.275 [%] 2.14 [%] 2.14 [%] 97.725 [%]

64 6 6.3:

6.2. 65 6.4:

66 6 6.5: a prior probability of failure

6.2. 67 T 2 T 1 T 2 T 1 a prior probability of failure T = 0 T 1 T 1 F T2 T 1 = P T 2 T 1 R(T 1 ) = Q(T 2) Q(T 1 ) R(T 1 ) (6.5) T 1 T 2 a posterori probability of failure < > 2.14 [%] 2.14 [%] R T2 T 1 (t) = 1 F T2 T 1 (6.6) F M 3σ, M 2σ = 0.0214/0.99865 = 0.02143 R M 3σ, M 2σ = 1 F = 0.97857 F M+3σ, M+2σ = 0.0214/0.02275 = 0.94066 R M+3σ, M+2σ = 1 F = 0.05934 6.2.2 ϕ(t ) = σq(t ) (6.7)

68 6 (6.1) (6.1) (6.7) ϕ(t ) (6.1) r(t ) = ϕ(t ) R W (T ) (6.8) λ W (T ) = q(t ) R W (T ) = ϕ(t ) σr W (T ) = r(t ) σ (6.9) 6.6 z R W (T ) (6.9) 6.2.3 (M<3σ) T = 0 q(t ) = 0 q(t ) = 1 ] [ σ 2π exp (logt M)2 2σ 2 (6.10)

6.2. 69 6.6:

70 6 M logt σ logt T = 0 T T Q(T ) = q(t )dt (6.11) 0 1 T 1 Q(T ) = 1 q(t )dt (6.12) R(T ) = T T q(t )dt (6.13) 6.2.4 T W T W Q(t) (wearout failure) W < > T W = M 3σ T = T W = M 3σ

6.2. 71 Q W = 0.00135 T W = M 4σ Q W = 0.0000317 T W = M 5σ Q W = 0.000000287 1,000 10,000 < > 1 T W = M 3σ 2 q w = 0.00135 700 1 T W = M 2σ Q W = 0.0228 50 1 6.2.5 T T T +t a prior probability of failure T +t λ exp( λt)dt = exp( λt) exp[ λ(t +t)] T exp( λt) [ λ(t +t)] F(t) = exp( λt) = 1 exp( λt) (6.14) T = 0 T = t

72 6 F(t) = Q(t) = 1 exp( λt) T t T 6.2.6 T t t Q(t) = Q C (t) + F W (t) Q C (t)f W (t) (6.15) C W Q C (t) = 1 exp( λt) T F W (t) (6.5)(6.13) F W (t) = 1 σ T +t 2π T 1 σ 2π exp [ (T M) 2 /2σ 2] dt T exp[ (T M)2 /2σ 2 ]dt (6.16) T t R W (t) = 1 F W (t) R(t) = exp( λt) exp( λt) F W (t) = exp( λt) R W (t) (6.17) (6.16) R W (t) = 1 σ 2π 1 σ 2π T +t exp[ (T M) 2 /2σ 2] dt T exp[ (T M)2 /2σ 2 ]dt (6.18)

6.2. 73 T T + t T +t, T t (6.1) (6.13) R W (t) = R W (T +t) R W (T ) (6.19) t (6.19) R(t) = exp( λt) R W (T +t) R W (T ) (6.20) < > R S (t) = exp( λ i t) R W i (T i +t) R Wi (T i ) (6.21) [R Wi (T i +t)/r Wi (T i )] 0.999 T W t 0.999 T Wi R W i (T i ) 0.999 (6.22) R Wi (T Wi ) R Wi (T i ) R Wi (T Wi ) T Wi t T Wi (6.20) (2.28) λ C λ W

74 6 λ = λ C + λ W (6.23) (6.20) R(t) = exp( λ C t) R W (T +t) R W (T ) ( T +t ) = exp λdt T (6.24) 6.6 λ W = r/σ (6.24) λ = λ C +λ W T T +t T +t T λdt = T +t T = λ C t + (λ C + λ W )dt T +t T λ W dt t λ W = 1 2 [λ W T + λ W (T +t)] (2.28) λ W = 1 [ ] q(t ) q(t +t) + 2 R(T ) R(T +t) (6.25) T +t λ W dt = λ W t (6.26) T R(t) = exp[ (λ C + λ Wm )t] (6.27)

7 7.1 T = 0 (6.20) t = T R(T ) = exp( λt) R W (0 + T ) R W (0) = exp( λt)r W (T ) (7.1) 1 R W (0) = 1 (2.21) (6.1) R W (T ) = 1 σ 2π ] (T M)2 exp [ 2σ 2 dt (7.2)

76 7 T M exp( λt) R W (T ) 7.1 7.2 m 7.1: m > M 7.2: m < M (7.1) T = 0 T 0 R(t) = exp( λt) R W (T 0 +t) R W (T 0 ) (7.3) 7.3 t = 0 (7.3) 1 (T =0) 7.1 M 9 4 T 0 = 0.4M 7.3

7.2. 77 7.3: T 0 t = T 2 M 3.5σ M 3σ 7.2 6 (6.23) 7.4 n = 1000 m = 1,000,000, M = 10,000, σ = 2,000 1,000 600 700

78 7 7.4: m = m/1000 = 1000 [ ] 1,000 < > 7.5 10,000 7.5: 5,400 [ ] 9,000 [ ] 9,970 [ ] 1 7.6 2

7.2. 79 7.6: 2 2M = 14,400 σ 2 = 2σ 1 = 1,200 10,000 [ ] 1 2 3 3 1 3 1 3M=21,600 λ r = 1/M = 0.000139 λ S = N λ r λ r wearout replacement rate T = nm (n = M/3σ 1 ) n = 7200/1800 = 4 T = 4M = 28, 800 7.7 < >

80 7 7.7: M 6σ 1 = 3,600 [ ] 10,000 [ ] 3,600 7,200 7,200 10,800 100,000 [ ] 10,000 [ ] 1 3600 [ ] 0.99999 7,200 [ ] 100,000 [ ] λ S = 1 (7.4) M i M i R S (t) = exp( λ S t) = exp ( 1 ) t M i (7.5)

7.2. 81 R S (t) = n R W i (T i +t) R Wi (T i ) (7.6) n t (6.13) R Wi (t) = R W i (T i +t) R Wi (T i ) T = i +t q i(t)dt T i q i (t)dt q i i T i i T Wi T Wi = T i +t R S (t) = R W i (T Wi ) R Wi (T Wi t) (7.7) T W (7.7) R S (t) = R W i (T W ) R Wi (T W t) (7.8)

82 7 (7.7) (7.8) λ S = λ Ci + 1 M i (7.9) R S (t) = exp [ ) ] (λ Ci + 1Mi t (7.10) λ r = 1/M λ = λ C + λ r (7.10) R S (t) = exp [ (λ Ci + λ r ) i t ] (7.11) λ i (7.11)

8 8.1 substandard components MTBF

84 8 N N E substandard N E N substandard MTBF m e ( Q = 1 exp t ) (8.1) m e ( Q = 1 exp N ) Et m e (8.2) 100 [%] N ( R = exp N ) Et m e (8.3) substandard < > 10 m e = 10 1 1 R = exp( 1) = 0.368 10 [ ] R = exp( 10) = 0.0000454 9 1 R = exp( 10 1 ) = 0.9 10 R = exp( 10 10 ) = 0.368 N E MTBF m e N E m e N E 1 m e (4.67) ( E(t) = m e 1 + 1 2 + 1 3 + + 1 ) (8.4) N E

8.1. 85 E(t) = 3m e = 30 [ ] substandard 8.1.1 substandard standard 8.1 8.1: substandard standard T max 8.2 2 T max 1

86 8 8.2: 2 8.2 8.1.2 N B N B /N N N E 1 (N B /N) ( N 2 = N E N E 1 N ) B N = N EN B N (8.5)

8.1. 87 (8.5) ( N 2 = N E N E 1 N ) E N = N2 E N (8.6) N 2 N 3 = N E N N 2 = N3 E N 2 (8.7) 1 (N E /N) 8.1.3 100 [%] λ g N G λ e N E λ g λ e λ S = N G λ g + N E λ e (8.8) N = N G + N E (8.9) N

88 8 λ S = Nλ g (8.10) (8.10) (8.8) λ S = Nλ g n n G (8.11) n G n n n n G = n E (8.12) (8.12) (8.11) ( λ S = Nλ g 1 + n ) E (8.13) n G n E /n G the incremental failure rate factor n G /n repair efficiency 8.3 N E N G λ e λ g

8.1. 89 8.3: 8.1.4 1 N E λ e substandard N G λ g substandard N E = N E N E + N G N T [ λ = λ g + λ 0 exp T ] E(t) (8.14) (8.15) λ 0 = (λ e λ g ) N E N (8.16) E(t) (8.4) T = 0 λ i = λ g + λ 0 = λ gn G + λ e N E N (8.17)

90 8 λ = λ g (8.18) 1 [ T ] R(T ) = exp λdt = exp 0 { T = exp 0 [ λ g + λ 0 E(t)exp ( T [ λ g T λ 0 E(t) + λ 0 E(t)exp )] E(t) ( T E(t) } dt )] (8.19) 8.2 (8.15) λ W [ λ L = λ g + λ 0 exp T ] + λ W (8.20) E(t) λ W = q(t ) R(T ) = ] (T M)2 [ 2σ 2 exp ] T [ exp (T M)2 dt 2σ 2 (8.21) λ W = q(t ) R(T ) = q(t ) T q(t )dt (8.22) λ L = λ g + λ 0 exp [ T ] E(t) + + q(t ) T q(t )dt (8.23)

8.2. 91 L(T ) T = 0 L(T ) = exp [ T ] λ L dt 0 L(T ) T (8.24) T T +t t [ T +t ] R(t, T ) = exp λ L dt T (8.25) T R(t) = exp( λ g t) (8.26) (8.24)(8.25) L(T ) = R C (T )R e (T )R W (T ) = exp( λ C T )exp [ T exp 0 R(t, T ) = R C (T )R e (T )R W (T ) = exp( λ C t)exp [ T +t exp T { λ 0 [1 exp( αt )] α ] q(t ) T q(t )dt dt { λ 0 α } } exp( αt )[1 exp( αt)] ] q(t ) T q(t )dt dt α = 1/E(t) (8.19) n (8.27) (8.28) R S (t) = R i (t, T i ) (8.29) (8.28)

9 9.1 (off-schedule maintenance) (schedule maintenance) 1. 2. 3.

94 9 T p m t t m = t + t + m 1 m 2 = = n t i=1 m i n i=1 λ i t (9.1) T i H o = t m 1 T 1 + t m 2 T 2 + = = n T i i=1 n i=1 m i t (λ i T i )t (9.2) T i H o T o T p t

9.1. 95 T m = T p + T o (9.3) T r system utilization factor U = t T p + T o + T r +t (9.4) maximum possible system utilization factor U = = t T p + T o +t t T m +t (9.5) (9.1) (9.2) 1) 3/2λ 2) 3/2λ 1/λ 1/2λ 1) 2) (4.32)

96 9 τ 1 e λτ m = 0 L(t)dt (9.6) L(t) 8 (8.27) (r + q) 3 = r 3 + 3r 2 q + 3rq 2 + q 3 (9.7) T n (9.7)

9.2. 97 r 3 n 3r 2 qn 3rq 2 n q 3 n n N N = n(3r 2 q + 2 3rq 2 + 3 q 3 ) = n(3r 2 q + 6rq 2 + 3q 3 ) (9.8) h 1 h total = Nh 1 (9.9) h 2 nh 2 h over all = Nh 1 + nh 2 (9.10) repair rate h over all /nt 9.2 maximum possible system utilization factor (9.5) m T m m T m = T m m t (9.11)

98 9 m, T m t, T m maximum possible system utilization factor U m system availability A A = m m + T m (9.12) m, T m t, T m maximum possible system utilization factor U m 100 [%] A + B = 1 complementary probability B B system unavailability T m B = m + T m (9.13) B 8760 [ ] T m T m (9.12) (9.13) A = 1 T m 8760 T m B = 8760 (9.14) (9.15) T m 9.3 system dependability D

9.3. 99 off-schedule maintenance T o (9.12)(9.13) D = 1 T o 8760 (9.16) (9.2) t off-schedule maintenance T o (9.2) (9.2) H o t = n i=1 (λ i T i ) (9.17) off-schedule H o = T o r r = T o /t r = T o /t 0ff-schedule D = = = t T o +t 1 1 + T o /t 1 1 + r (9.18) D = 1 1 + (λ i T i ) (9.19)

10 10.1 FMEA (failure Mode and Effects Analysis)

102 10

10.1. FMEA (failure Mode and Effects Analysis) 103 (10.1) 10.4 C S = (C 1 C 2 C 3 C 4 C 5 ) 1/5 (10.1) C S C 1 C 2 C 3 C 4 C 5 C 1 10.1 C 2 10.2 C 3 10.3

104 10 10 9 8 7 6 5 4 3 2 1 10.1: C 1 10 9 8 7 6 5 4 3 2 1 10.2: C 2

10.1. FMEA (failure Mode and Effects Analysis) 105 10 10 2 9 10 2 3 10 3 8 3 10 3 10 3 7 10 3 3 10 4 6 3 10 4 10 4 5 10 4 3 10 5 4 3 10 5 10 5 3 10 5 10 6 2 10 6 10 7 1 10 7 10.3: C 3 C S 7 C S < 10 4 C S < 7 2 C S < 4 C < 2 10.4: C S

106 10 10.2 FTA (Failure Test Analysis) (Fault Tree diagram) 1. 2. 3.

10.2. FTA (Failure Test Analysis) 107 10.1 10.2 Q A, Q B 1 (1 Q A )(1 Q B ) = Q A + Q B Q A Q B = Q A + Q B (10.2) (10.2) OR AND OR AND 10.3 10.4

108 10 10.1:

10.2. FTA (Failure Test Analysis) 109 10.2: (X 1 + X 2 )(X 1 + X 3 ) = X 1 + X 1 X 3 + X 1 X 2 + X 2 X 3 = X 1 + X 1 X 2 + X 2 X 3 = X 1 + X 2 X 3 (10.3) 10.3: 10.4:

110 10 10.3 Z 8115

10.3. 111

11 11.1 1. 2. 3. 4. 5. 6. 7.

114 11

11.1. 115 11.1: 1) C A B C A 11.2: 1. 2. 3. 1. man 2. machine 1)

116 11 3. method 1. 2. 3.

11.2. 117 100 [%] 11.2 11.1 11.2 11.3 11.4 2SC1815 11.3 1.

118 11 11.1:

11.3. 119 11.2:

120 11 11.3:

11.3. 121 11.4:

main : 2005/4/26(22:28) 122 第 11 章 品質保証体系 図 11.5: 信頼性試験試験結果

11.3. 123 11.6: (a) (b) (c) (d) (e) (f) (g) 2. (a) (b) (c) 3. (a) (b) (c)

124 11 11.7: 2SC1815

12 12.1 2SC1815 1

126 12 V CBO 60 [V ] V CEO 50 [V ] V EBO 5 [V ] I C 150 [ma] I B 50 [ma] P C 400 [mw] T j 125 [ ] T stg 55 125 [ ] 12.1: 1 2 12.1.1 2 1 N 1 N 1 N 2 N 0

12.1. 127 N 0 + N 0 N 1 + N 0 N 1 N 2 + N 0 N 1 N2 2 [ + = N 0 1 + N1 (1 + N 2 + N2 2 + N2 3 ( ) + )] 1 = N 0 1 + N 1 1 N 2 = N 0 1 + N 1 N 2 1 N 2 (12.1) N 2 1 I = I s 1 + N 1 N 2 1 N 2 (12.2) 12.1 12.1: M M = 1 1 αdx (12.3)

128 12 M = V B n 2 6 1 1 (V /V B ) n (12.4) 12.1.2 10 6 [V /cm] Ψ 0 Ψ 0 = kt ( ) q ln NA N D n 2 i (12.5)

12.2. 129 12.2 V (BR)CBO >V (BR)CEO >V (BR)CES >V (BR)CEX V B I CBO V (BR)CBO 12.1.3 β µa β 12.2

130 12 12.2: V (BR)CBO V (BR)CEO V (BR)CES V (BR)CER V (BR)CEX

12.2. 131 T = R P (12.6) T R [ /W] P < > J.Fourie q x = ka x dt dx q x k [m /w] A x x (12.7) x (12.6) (12.7) (12.6)

132 12 12.3 12.3: 12.4

12.2. 133 12.4: P R i R o T j T c T a R T = R i + R o (12.8) R T = R i + R o(r s + R c + R f ) R o + R s + R c + R f (12.9) R o R T = R i + R s + R c + R f (12.10)

134 12 12.5: R s R c R f

12.2. 135 2 [mv/deg] 12.4 12.4 12.6 12.6: 12.7 r t r t = t ( 1 R j + 1 t ) 1 r t (t +t 1 ) r t (t) + r t (t 1 ) t 0 t 12.8 R s + R c 12.2

136 12 12.7: 12.8:

12.3. 137 12.9 θ C + θ S [deg/w] 0.10 0.3 TO 3 0.70 0.80 1.25 1.45 (50 100 µ) 0.5 0.7 1.2 1.5 0.15 0.2 0.4 0.5 TO 66 (50 100 µ) 0.6 0.8 1.5 2.0 (50 100 µ) 0.6 0.8 1.2 1.4 TO 126 0.3 0.5 2 8H1A 2.0 2.5 1.5 2.0 TO 220AB 0.3 0.5 1.5 2.0 (50 100 µ) 2.0 2.5 4.0 6.0 TO 220 0.4 0.6 1.0 1.5 TO 3P 0.1 0.2 2 16BIA (50 100 µ) 0.5 0.8 0.5 0.9 2 16CIA (50 100 µ) 2.0 3.0 TO 3P(L) 0.1 0.2 0.4 1.0 2 21F1A (50 100 µ) 0.5 0.7 1.2 1.5 TO 3P(H) 0.2 0.4 1.1 1.5 2 16D2A (50 100 µ) 1.4 1.6 2.5 3.5 TO 3P(H) 0.6 0.8 1.3 1.7 2 16E2A 12.2: 12.3 12.3.1 ( K = Aexp φ ) kt K (12.11)

138 12 12.9: A φ k T a τ = a/k A = a/a (12.11) ( ) φ τ 1 = A exp (12.12) kt (12.12) ( ) ( ) φ φ τ 1 = A exp, τ 2 = A exp kt 1 kt 1 (12.13) lnτ 1 lna lnτ 2 lna = T 2 (12.14) T 1 [ ( φ 1 1 )] (12.15) k T 2 T 1 α = τ 2 τ 1 = exp

12.4. 139 α [ev ] 0.6 1.2 0.7 1.4 0.85 1.1 0.6 1.2 0.3 0.35 0.8 SiO 2 1.0 1.4 Si SiO 2 1.0 0.8 1.0 12.3: 12.3.2 ln(τ) = A + B α ln(s) (12.16) T A, B S 12.4

140 12 12.4.1 12.10 12.10: 12.4.2

12.5. 141 1. 2. 3. 1. 2. 3. 12.5 12.5.1

142 12 12.5.2 12.5.3 12.5.4

12.5. 143

A A.1 1. (a) (b) 2. (a) (b)

146 A (c) (d) (e) (f) 3. (a) (b) (c) (d) 4. 5. X 1, X 2,, X n m = E(X 1 ) = E(X 2 ) = = E(X n ) (A.1) σ = σ(x 1 ) = σ(x 2 ) = σ(x n ) (A.2)

A.1. 147 E(aX + by ) = ae(x) + be(y ) (A.3) V (ax + by ) = a 2 V (X) + b 2 V (Y ) (A.4) X 1, X 2,, X n X = X 1 + X 2 + X n n (A.5) S 2 = 1 2 6. [ (X 1 X) 2 + (X 2 X) 2 + (X n X) 2] (A.6)

148 A 7. (a) (b) 8. (a) (b) A.2 X 1, X 2,, X n (A.5) ( ) X1, X 2,, X n E( X) = E n = 1 n (X 1, X 2,, X n ) = m (A.7)

A.2. 149 1. ( ) X1, X 2,, X n V ( X) = V = 1 n n 2V(X 1, X 2,, X n ) = 1 n 2 (σ 2 + σ 2 + σ 2 ) = σ 2 2. ( ) X1, X 2,, X n V ( X) = V n = 1 n 2V(X 1, X 2,, X n ) n (A.8) = σ 2 n N n N 1 (A.9) E(S 2 ) = { 1 [ E (X1 X) 2 + (X 2 X) 2 + + (X n X) 2]} n = 1 { n E [(X 1 m) X m)] 2 + [(X 2 m) X m)] 2 + + [(X n m) X m)] 2} = 1 n E [ (X 1 m) 2 + (X 2 m) 2 + (X n m) 2] {[ ] } 1 E n (X 1 + X 2 + X n ) ( X m) + E [ ( X m) 2] = 1 n (σ 2 + σ 2 + σ 2 ) σ 2 n = n 1 n σ 2 (A.10) (n 1)/n 3. 1

150 A 1 m σ 2 n X n ( ) N m, σ 2 n 0 1 W N = Y N Y N = N i=1 (X i X i ) = 1 N σ Y N N i=1 σ X 2 NσX i X) i i=1(x W N Φ WN (ω) = E [exp( jωw N )] { [ ]} N jω = E exp NσX i X) i=1(x = [ { [ ]}] jω N E exp NσX (X i X) { [ ]} jω E exp = NσX (X i X) [ E 1 jω ( ) jω (Xi X) (X i X) 2 + + R ] N = 1 ω2 NσX NσX 2 N 2N + E [R N] N ln[φ WN (ω)] = N ln [1 ω2 2N + E [R ] N] N ln[φ WN (ω)] = ω2 2 + E [R N] N [ ω 2 2 2N E [R ] 2 N] + N

A.3. 151 N 1 A.3 ) lim φ WN(ω) = exp ( ω2 N 2 (A.11), A.3.1,, X s 2, m σ 2 m = X = 1 n (x 1 + x 2 + + x n ) (A.12) σ 2 = s 2 = 1 n 1 n i=1 (x i X) 2 (A.13) < > R.A.Fisher x 1, x 2,, x n n F = f (x 1 ) f (x 2 ) f )x n ) (A.14) x 1, x 2,, x n θ F theta theta theta F θ = 0 (A.15)

152 A, ln θ = 0 (A.16) A.3.2 θ Θ 1 Θ 2 γ Θ 1, Θ 2 P(Θ 1 θ Θ 2 ) = γ γ 0.90, 0.95, 0.99, 0.999,,,,, ( ) 2 X 1, X 2, X n m 1, m 2, m n σ 1, σ 2, σ n m = M 1 + m 2 + + m n (A.17) σ = σ1 2 + σ2 2 + + σ 2 (A.18) 3 X 1, X 2, X n m σ X = 1 n (X 1 + X 2 + X n ) (A.19) m σ 2 /n

A.3. 153 4 X 1, X 2, X n m σ T = n X m Σ (A.20) n 1 t Y = (n 1) Σ2 σ 2 (A.21) n 1 Σ 2 = 1 n 1 n i=1 (X i X) 2 X = 1 n (X 1 + X 2 + X n ) 1. γ 2. γ c 3. X 4. k = cn/ n X k m X + k 1. γ 2. n 1 t, c F(c) = 1 (1 + γ) 2 3. X σ 2 4. k = cσ/ n X k m X + k 1. γ

154 A 2. n 1 t, c 1, c 2 F(c 1 ) = 1 2 (1 γ), F(c 2) = 1 (1 + γ) 2 3. σ 2,(n 1)σ 2 4. k 1 = (n 1)σ 2 /c 1, k 2 = (n 1)σ 2 /c 2 k 2 Σ 2 k 1 (A.11) P( Z < k) = P( X m σ n ) < k (A.22) (A.22) k = k 0 P P 0 1 P 0 (A.22) ( ) σ σ P X k 0 n < m < X + k 0 n = P 0 (A.23) σ X k 0 n σ < m < X +k 0 n P 0 (.A.10) P 0

A.3. 155 A.3.3 B(n, p) E(X) = np, V (X) = np(1 p) (A.24) Z = X np np(1 p) (A.25) P 0 Z < k 0 ) X np P( < k 0 = P 0 (A.26) np(1 p) p = X n (A.27) (A.26)(A.27) ( p(1 p) P p k 0 n ) p(1 p) < p < p + k 0 = P 0 (A.28) n p = p (A.28) ( ) p(1 p) p(1 p) P p k 0 < p < p + k 0 = P 0 (A.29) n n

156 A P 0 p k 0 < p < p+k 0 p(1 p) n p(1 p) n A.4 < > σ n X Z = X m σ n N(0, 1) 0.05 P( Z 1.96) = 0.05 X m 1.96 σ n

A.4. 157 < > (A.24. A.25)

IEEE VA QC VA QC VA QC VA QC 2002 7

[1] Igor Basovsky Reliability Theory and Practice Prentice-Hall Inc. [2] [3] Peyton Z. Peebles, Jr. [4] Erwin Kreyszig