Similar documents
DNA

(biome) polymorphism sibling species ph 3.2 vs vs vs (endotherm) (ectotherm) 2

Juntendo Medical Journal


A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc

ABSTRACT The movement to increase the adult literacy rate in Nepal has been growing since democratization in In recent years, about 300,000 peop

2 The Bulletin of Meiji University of Integrative Medicine 3, Yamashita 10 11

MM0506-Ariyoshi.ind

IR0036_62-3.indb

untitled


_’¼Œì


在外教育施設派遣教員安全対策資料 在外教育施設派遣教員安全対策資料

202


2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

RTM RTM Risk terrain terrain RTM RTM 48

..,,...,..,...,,.,....,,,.,.,,.,.,,,.,.,.,.,,.,,,.,,,,.,,, Becker., Becker,,,,,, Becker,.,,,,.,,.,.,,


NINJAL Research Papers No.8


ボーナス制度と家計貯蓄率-サーベイ・データによる再検証-

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

08_中嶋真美.indd



16_.....E...._.I.v2006


Key words : Adverse reactions, Egg allergy, IgG antibody, Mills allergy, FAST

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi


Fig. 1 Trends of TB incidence rates for all forms and smear-positive pulmonary TB in Kawasaki City and Japan. Incidence=newly notified cases of all fo

29 Short-time prediction of time series data for binary option trade



2 10 The Bulletin of Meiji University of Integrative Medicine 1,2 II 1 Web PubMed elbow pain baseball elbow little leaguer s elbow acupun

11_渡辺_紀要_2007

,,.,,.,..,.,,,.,, Aldous,.,,.,,.,,, NPO,,.,,,,,,.,,,,.,,,,..,,,,.,

短距離スプリントドリルが大学生野球選手の短距離走速度向上に与える効果

2.2 Gompertz-Makeham Gompertz Makeham Gompertz Gavrilov and Gavrilova Gavrilov and Gavrilova (1991) Mori and Nakazawa (2003) S DNA mev-1 II

56 56 The Development of Preschool Children s Views About Conflict Resolution With Peers : Diversity of changes from five-year-olds to six-year-olds Y

01_渡部先生_21-2.indd

Kansai University of Welfare Sciences Practical research on the effectiveness of the validation for the elderly with dementia Naoko Tsumura, Tomoko Mi


semen quality or those without WBC in semen. In the patients with azoospermia and normal FSH levels (normogonadotropic azzospermia), the antibody (IgG

_??_ Fig. 1. Annual number of subjects who were bitten by possibly rabid animals in the rabies endemic regions and thereafter visited our vaccine clin

CHEMOTHERAPY Fig. 1 Body weight changes of pregnant mice treated orally with AM- 715 Day of sestation

Key words: Antibodies to Leptospira, Tokyo, Uveitis

_’£”R‡Ù‡©

ñ{ï 01-65

高齢化とマクロ投資比率―国際パネルデータを用いた分析―

THE JAPANESE JOURNAL OF PERSONALITY 2007, Vol. 15 No. 2, 217–227


_念3)医療2009_夏.indd

PDF用-表紙.pdf

Physical and Psychological Effects of Stressors in Female College Students Reizou Mita*1, Konosuke Tomabechi*1, Isao Yamaguchi*1, Naoko Soeno*1, Shuhe



九州大学学術情報リポジトリ Kyushu University Institutional Repository 看護師の勤務体制による睡眠実態についての調査 岩下, 智香九州大学医学部保健学科看護学専攻 出版情報 : 九州大学医学部保健学

NODERA, K.*, TANAKA, Y.**, RAFAEL, F.*** and MIYAZAKI, Y.**** : Relationship between rate of success and distance of shooting on fade-away shoot in fe

<95DB8C9288E397C389C88A E696E6462>



/‚“1/ŒxŒ{‚×›î’æ’¶


Web Stamps 96 KJ Stamps Web Vol 8, No 1, 2004

Fig. 1 Chemical structure of DL-8280

自殺の経済社会的要因に関する調査研究報告書


Fig. 1 Structure of a Sebaceous Follicle (Ref.1).

Kyoto University * Filipino Students in Japan and International Relations in the 1930s: An Aspect of Soft Power Policies in Imperial Japan

20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow


千葉県における温泉地の地域的展開

A5 PDF.pwd

CRA3689A

Yamagata Journal of Health Sciences, Vol. 16, 2013 Tamio KEITOKU 1 2 Katsuko TANNO 3 Kiyoko ARIMA 4 Noboru CHIBA 1 Abstract The present study aimed to

第58巻6号/投稿規定・目次・表2・奥付・背

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

Endocrinological and statistical analysis of ovarian function in hysterectomized patients Masaya HAYAFUJI, Kazuaki KATAYAMA and Matsuto MOCHIZUKI Depa

40B: Satoshi Shimai 1 and Shigehiro Fujimoto 2 1 Center for Liberal Arts and Education, Minami-Kyushu University, Miyakonojo,

132 Camerer (2003) Chen, Lakshminarayanan and Santos (2006) fmri ventral stiatum Fliessbach K., Weber B., Trautner P., Dohmen T., Sunde U., Elger C. E

k = The Last Samurai Tom Cruise [1] Oracle Ken Watanabe (I) has a Bacon number of 2. 1: 6(k 6) (small world p

indd

10-渡部芳栄.indd

名称未設定-1


yasi10.dvi

HPV HPV HPV HPV 7 HPV 8 9 HPV 3 HPV HPV HPV , Becker Ajzen H


Title 泌尿器科領域に於ける17-Ketosteroidの研究 17-Ketosteroidの臨床的研究 第 III 篇 : 尿 Author(s) 卜部, 敏入 Citation 泌尿器科紀要 (1958), 4(1): 3-31 Issue Date URL

Fig. 1 Clinical findings and extent of inflammation area in female urethrocystitis Fig. 2 Classification and distribution of female patients with blad

m m Satoshi SATO 48

日本人の子育て観-JGSS-2008 データに見る社会の育児能力に対する評価-


CHEMOTHERAPY APR. 1984

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Transcription:

3 1 7 1.1.......................................... 7 1.2............................................ 8 1.3..................................... 10 1.4.................................... 12 2 15 2.1.............................................. 15 2.2................................................ 15 2.3...................................... 19 2.4.................................... 20 2.5................................ 21 3 23 3.1............................................ 23 3.2............................................ 24 3.3............................................. 24 3.4.......................................... 25 4 27 4.1.......................................... 27 4.2....................................... 28 4.3.................................... 30 4.4.................................... 32 4.5........................................ 34 4.6................................. 34 4.7...................................... 37 5 39 5.1............................. 39 5.2....................................... 39 5.3.................................... 43 6 49 6.1.................................. 49

4 6.2.................................... 50 6.3.................................. 50 7 Q&A 55 7.1...................................... 55 7.2............................................ 55 7.3..................................... 56 8 59

5 1994 7 : *1 1994 12 : 1996 6 : 1997 7 : HTML 1997 12 : 1998 7 : 1998 11 : HTML 2000 11 : 2001 1 : 7.1 2001 12 : 2003 10 : LaTeX 2003 11 : 2007 11 : 11 21 *1 Knell (1991) Malaria, Oxford University Press

7 1 1.1 (Plasmodium) mal-aria wet 2 Plasmodium 1. (Anopheles) 2. 7 10 3. 4. 5. (inoculation) 1.1.1 6 8 Plasmodium 1.1 (=tertian) (=quartan) 40 41 105 106 1 2 5

8 1 tertian malaria quartan malaria body temperature 36 37 38 39 40 41 body temperature 37 38 39 40 0 5 10 15 days after infection 0 5 10 15 days after infection 1.1 8 1.1.2 (falciparum malaria) (stupor) (fits) (coma) 1.2 25 1.1 50 10% 1 2 1 2%

1.2 9 1.1 WHO 1 ; 1,000 (WHO, 1999) 1) WHO 1985 1986 1987 1988 1989 1990 1991 1992 2) 14,557 18,568 21,295 25,603 33,285 21,903 21,570 21,371 909 949 1,016 1,118 1,112 1,056 1,230 1,186 3,557 4,089 4,059 3,992 4,014 4,029 4,163 3,940 248 225 264 175 225 250 245 193 19,272 23,830 26,633 30,888 38,635 27,238 27,209 26,690 1993 1994 1995 1996 1997 27,603 32,619 21,512 18,097 12,260 982 1,113 1,280 1,138 1,054 3,869 3,936 4,410 4,877 5,289 203 765 3) 177 161 112 32,657 38,433 27,379 24,274 18,716 1) 2000 11 13 (WHO, 1997) 2) 900 2,500 1 3) WHO 1960 1985 1988 (, 1994) (1991) Daumier agues 1,000 mm (, 1993)

10 1 (Aedes polynesiensis) (Anopheles punctulatus) (An. farauti) 2,100 m (, 1993) AIM 100 1 3 (AIM Developing Team, 1994) (HYV) HYV (, 1993) 1.3 Plasmodium 25% DNA Malaria s Eve 6000 (Rich, 1998) 1000 Trypanosoma brucei 1500 1400

1.3 11 (Thucydides) 413 (coup) 323 33 17 1930 10 1943 7 5 2 6361 3 13

12 1 1.4 1.4.1 Cinchona 17 Cinchona Countess of Chinchon 1637 Cardinal Juan de Lugo Santo Spirito 1692 1677 London Pharmacopeia Cortex Peruvianus 1666 Morton Sydenham agues 1712 Torti 1765 (James Lind) Linnaeus 1749 Cinchona 1820 Pelletier Caventou (quinine) cinchonine Cinchona 1850 9 Cinchona Cinchona Cinchona 1861 (Charles Ledger) (Manuel Incra Macrami) Cinchona 3 4 50 Tacna 1865 5 19 15 kg (George) 1 100 1865 12 20000 500 12000 1872 4 8 10 2 13 20

1.4 13 90 20 Cinchona ledgeriana 1.4.2 1897 8 20 (Ronald Ross) Secunderabad 40 (Surgeon Major) (Sir Patrick Manson) (Lancini) 1717 (Albert King) 1882 1894 (Alphonse Laveran) 1880 400 (Pasteur) 1897 1897 8 15 10 (Hussein Khan) 8 20 2 (cyst) (Culex) (Anopheles)

14 1 1902 1901 1902 1905 (Grassi) Anopheles Anopheles (Bignami) (Bastionelli) (Thorburn Manson) (George Warren) 1953 (Tropical Health and Hygiene) 1902 (Khartoum) (Henry Wellcome) (Andrew Balfour) 1960 1970 1998 DNA

15 2 2.1 1 2.1 2.2 5 3 Eimeriida Adeleida Haemosporida 3 Plasmodiidae Haemosporida Haemosporida Plasmodiidae Haemoproteus Plasmodiidae Plasmodium Marchiafava Eli 1885 1954 Plasmodium malariae Plasmodium falciparum malariae 4 (P. falciparum) (P. vivax) (P. malariae) (P. ovale) 2.2 1940 2

16 2 2.1 1) 2) 1 3) 4) 5) (1) 10,000 (2) 10,000 30,000 (3) 8 32 1) Gamogony Syngamy (Union of gametes in fertilization) 2) Gamete Gametocyte (Zygote) 3) Sporogony (Trophozoite) (Merozoite) 4) Sporocyst 5) Sporozoite P. sasai Sceloporus ferrariperezi P. mexicanum (Lutzomyia vexatrix occidentis Lutzomyia stewardi) (Passer domesticus) P. cathemerium P. circumflexum P. elongatum P. gallinaceum (Macaca fascicularis) P. cynomolgi (Macaca fascicularis (=Macaca irus) ) P. knowlesi P. berghei Thamnomys surdaster 3 (Hylobates lar.) P. eylesi Macaca nemestrina nemestrina P. fieldi Macaca nemestrina P. fragile Lemur fuluvs P. girardi P. schwetzi (Pongo pygmaeus) P. silvaticum P. berghei P. inopinatum P. atheruri P. vinckei P. anomaluri P. booliati P. watteni

2.2 17 2.2 4 P. falciparum P. vivax P. ovale P. malariae 1) 8-25 8-27 9-17 15-30 5.5 8 9 14-15 30,000 10,000 15,000 15,000 + + 60µm 45µm 60µm 55µm 48 48 50 72 (Synchronicity) 2) ++ + 8-32 8-24 4-16 6-12 Maurer Schuffner Schuffner Ziemann 27 10 8-9 12-14 14-15 55µm 50µm 45µm 40µm 3) + + 4) + 5) 1) 2) Reticulocyte (normoblast) RNA RNA brillant cresyl 0.3 1% 3) Hypnozoite 1978 1982 Krotoski Shute 1946 Krotoski 1979 P. cynomolgi P. vivax 4) 30 36 (Tsuchida et al., 1982) 5) 1990 2400 mg (Schuurkamp et al., 1992) (Amor and Richards, 1992)

18 2 P. brucei P. cephalophi P. roussetti P. voltaicum P. brasilianum P. simium 2 (1979) 2.2.1 (P. falciparum) Alfonse Laveran Oscillaria malariae Feletti Grassi Laverania malariae Koch(1899) Plasmodium tropica falciparum Welch 1897 Haematozoon falciparum 1910 (Peters, 1982) 48 1980 pfmdr1 2000 pfcrt 28 pfcrt (digestive vacuole) Fp9= ferriprotoporphyrin IX hemozoin Fp9 Fp9 hemozoin (Warhurst, 2001) 2.2.2 (P. vivax) Haemamoeba malariae 1890 Grassi Feletti Haemamomeba vivax 48 48 2.2.3 (P. malariae) 1892 Feletti and Grassi Haemamoeba malariae Labbe 1894 Haemamoeba laverani var, quartana Plasmodium malariae quartanae Plasmodium

2.3 19 quartanae 72 72 2.2.4 (P. ovale) 2.3 (parasitophorus vacuole) P. falciparum accole P. vivax 2.3.1 (ATP) 2.3.2 4 2.3.3 [DNA ] [RNA ]

20 2 (Azure pigment) 2.3.4 2.3.5 DNA (PABA) PABA PABA 2 (proguanil) (pyrimethamine) 2.4 8th November 1998 P. falciparum 0.02 pg 2 10-14 g DNA 10 10 1 P. falciparum DNA (A+T) 80% GC% 20% A+T Plasmodium P. falciparum (A+T) P. falciparum (A+T) (trophozoite) (plasma)

2.5 21 (folic acid) PABA (paraaminobenzoic acid; ) P. falciparum DNA DNA P. falciparum DNA P. falciparum Plasmodium (GC%) DNA 3 Plasmodium GC% G+C=1-(A+T) 18% P. falciparum P. berghei P. lophurae 30% P. knowlesi P. fragile 18% 30% P. cynomolgi P. vivax P. falciparum DNA DNA 10 DNA (strain) (rearrangement: chromosomal mutation ) 2.5 (CSP)

22 2 2.3 P. falciparum ( 1000) S-Antigen GBP 105-115 PMMSA RESA KAHRP MESA 180-220 155 85-105 250 FIRA 300 (pellicle) P. falciparum NANP 37 *1 NVDP 4 P. vivax DRADGQPAG 10 DRAAGQPAG 9 Plasmodium (strain) CSP CSP- CSP 2.3 Plasmodium S-Antigen PAKASQGGLED 100 FIRA PVTTQE 169 Plasmodium 4 *1 1 N A P V D R G Q

23 3 (1993 3.1 2007 3,490 Harbach and Howard, 2007 2004 7 444 Harbach, 2004 (Arthropoda) (Insecta) (Diptera) (Orthorrhapha) (Culicidae) (Anophelinae) (Culicinae) *1 (Culicini) (Sabethini) (Culex) (Aedes) Aedes albopictus Culex pipiens pallens (Anopheles) Bironella Chagasis (sibling species) *2 cryptic species Harbach (2004) 444 488 50 An. maculipennis 6 An. gambiae An. puncturatus An. farauti 7 subspecies Schmidt et al., 2003 No.1, 2, 7 No.7 No.1 *1 (Toxorhynchitinae Harbach and Kitching (1998) *2 DNA PCR

24 3 3.2 4 1 25-30 1.5 Psorophora, Haemagogus 1 (=palmate hairs) 7-10 1 4 4 2-3 2-4 1 13 70 (autogeny) (gonotrophic cycle) 5 6 (suspensory ligament) 4 (follicular relic) 80% 10 10% 4 3.3 An. farauti 1:00-3:00 An. koliensis 2:00-3:00 An. farauti 22:00-23:00 An. koliensis 23:00-24:00 1:00-2:00 (Charlwood and Graves, 1987)

3.4 25 An. funestus 800 m An. pharoensis 9 km 3.4 (anthropophilic) (zoophilic) zooprophylaxis 600 379 175 (Braverman, 1991) ABO 476 1,300 A 29.0%:17.6% O (Gupta and Chowdhuri, 1980) (1) (2) A A (3) ABO A Gupta 20 An. gambiae 162 O 5.05 A 3.28 B 4.25 AB 3.28 (Wood and Harrison, 1972) (Wood, 1976) ABO Wood O O A A A O H (Gilbert et al., 1966) (Carnevale, 1978) (Maibach et al., 1966) (Kingsolver, 1987)

27 4 4.1 1 40 : 20% 7.1 g/dl : 50 mol/l : 40 mg/dl : 24 400 ml 3.0 mg/dl Clark Cowden (Clark and Cowden, 1999) NO (inos) NO hypoxia WHO severe falciparum malaria 5% 1 l 250,000 parenteral 25% (Bradley et al., 1990)

28 4 (endothelium) (margination) 70% Dürck (cellularity) (erythrophagocytosis) (sideroblast) (megakaryocyte) (centrilobular necrosis) (tropical splenomegaly syndrome) (tubular necrosis) (quartan malarial nephrosis) (bronchopneumonia) (myocarditis) (ulceration) (jejunum) (lamina propria [mucosa]) 4.2 4.1 WHO endemicity

4.2 29 4.1 1) 1) rrna 2) rrna (IFAT) ELISA 3) ABC-ELISA RESA-ELISA RESA 2) RESA-PCR RESA 2) MSP-ELISA MSP DNA Hp 4) SRID Hp 4) ELISA DNA-FC 5) DNA 2) Hp Hp 2) DNA 6) 1) 2) MSP-ELISA 3) ELISA enzyme-linked immunosorbent assay enzyme immunoassay (EIA) 4) (Hp) Hp Hp 5) FC 1998 11 6) FC PCR

30 4 endemicity IFAT ABC-ELISA rrna DNA RESA-PCR endemicity ABC-ELISA (Sato et al., 1990) (1995) Hacket (Ohmae et al., 1991) 1970 DNA, RNA PCR RESA infective bites 4.3 4.3.1 (quartan malarial nephrosis) PNG C3 IgG2 (tropical splenomegaly syndrome) PNG IgM

4.3 31 PNG 4.3.2 EB PNG EB EB Whittle (1984) T (T8+) T (T4+) T EB B IgG (o nyong-nyong) (Masaka) 1959 An. gambiae An. funestus HIV AIDS T B T HIV 5) 4.3.3 E 4.3.4 (Allison, 1954; Livingstone, 1958) G6PD (Nagel, 1990) G6PD G6PD (Yuthavong et al., 1990) (Ruwende et al., 1995)

32 4 (Duffy) Fy(a+b+) Fy(a+b-) Fy(a-b+) Fy(a-b-) Fy(a-b-) (Gerbich) 4.4 4.4.1 G6PD Anopheles labranchiae (Brown, 1986) (Wood, 1979) (Inhorn and Brown, 1990) (MacCormack, 1984) (Nakazawa, 1998) 4.4.2 G6PD G6PD (Katz, 1987) (1990) G6PD

4.4 33 G6PD G6PD X G6PD X G6PD G6PD G6PD G6PD (Golenser et al., 1983) G6PD G6PD 2 G6PD G6PD (Manihot esculenta) (HCN) HCN HCN (cassareep) 100 g NaCN 235 mg HCN HbS 10-35 mg/kg body weight/day 10-12 kg 100 g

34 4 G6PD G6PD G6PD G6PD G6PD G6PD (Durham, 1991) 4.5 HIV T(TC) (Butcher, 1992) 2 MHC I II T(TH) TH B TC (NK) (K) TH T B T(TS) (TNF) TNF TNF TH update 8th November 1998 4.6 4.6.1 (China, Asia)

4.6 35 4.6.2 Madang (Papua New Guinea, Oceania) (Papua New Guinea Institute of Medical Research) (Oppenheimer et al., 1984, 1986) (Heywood et al., 1989) 10 4-17% (Moir et al., 1989) 10 km FC27-S ELISA (Forsyth et al., 1989) 4.6.3 Senegal River (Senegal, Africa) Parent (1987) Boke Diarobe Aere Lao 2 km 10 km 4.6.4 Antananarivo (Madagascar, Africa) An. funestus (Leper et al., 1988, 1990; Fontenille et al., 1990) 4.6.5 Gambia River (Gambia, Africa) Greenwood 4.6.6 (Papua New Guinea, Oceania) 4,000 km2 13 2,000 20 (Ohtsuka, 1983; Ohtsuka and Suzuki [Eds.], 1990) FAO/WHO

36 4 1 kg 0.9 1.3 g BMI 100 mg 50 mg 30 3 10 1989 2 WHO WHO (Necator americanus) (, 1991) (Anchirostoma duodenale) (LDH) LDH LDH LDH LDH (Nakazawa et al., 1994, 1996;, 1993, 1994)

4.7 37 4.7 Malaria as Anthropo-Ecosystem (Kondrashin and Kalra, 1987-1989) - - (MAES) (MISS) (ESS) (DSS) (SAcSS) (SAgSS) MAES MAES

39 5 5.1 endemic WHO 2-9 10% hypoendemic(=epidemic) 11-50% mesoendemic 51-75% 25% hyperendemic 75% holoendemic 5.2 Anderson and May (1992; pp.377-392) (a) 1. (latent period) (infectious period): (P. falciparum) 9 10 (P. malariae) 15 16 (P. ovale) 10 14 (Molineaux and Gramiccia, 1980) P. falciparum 9.5 P. malariae 4 P. ovale 2 (Molineaux and Gramiccia, 1980) P. ovale, P. malariae, P.

40 5 falciparum (recovery) (parasite) (parasite) 60 Earle (1939) 200 300 Molineaux Gramiccia 2. : (parasite density) 2-4 100% 6-11 (Davidson and Draper, 1953) [1] [2] [3] (intensity of transmission) [3] (areas of high transmission) 40% 3-6 community 5 3. (rates of infection) (rates of reinfection): ( pristine force of infection) (basic reproductive rate)

5.2 41 R0 (conversion rate) (Bekessy et al., 1976) 5-10 (the Garki project) (immunocompetence) 4. : 4-5 Anderson May 1924 1926 WHO endemicity spleen rate 4 endemicity (Nakazawa et al., 1994) (case complication rate) (b) 50 1. (latent period) latent :

42 5 30 4 18 20 25-27 12 9 2. : 2 3 2 3 3. (p) : sporozoite rate 10% 2% 1/µ µ λ τ p p = (λ/(λ + µ)) exp( µτ) λ >> µ p = exp( µτ) 1 q p = qτ 1/µ τ p 1/µ τ 1-5

5.3 43 P. gallinaceum (Ward, 1963) 4. (human-biting rate): 5. : 5.3 5.1 5.3.1 Anderson & May (1992) (Ross, 1916) (Lotka, 1923) (Macdonald, 1957) Ross-MacDonald 2 y Y dy dt = (abn /N)Y(1 y) γy (5.1) dy dt = acy(1 Y) µy (5.2) N N m = N /N a b γ 1/γ µ 1/µ

44 5 5.1 RM Ross (1911), Macdonald (1957) RM 1 (DH) RM (low endemic area) Dye & Hasibeder (1986) RM 2 (DMT) RM holoendemic Diets et al. (1974) RM 3 (EBF) Elderkin et al. (1977) RM 4 [c] Zooprophylaxis Sota & Mogi (1989) DH 1 [d] Kingsolver (1987) DMT 1 [e] Collett et al. (1987), Ishikawa et al. (1996) DMT 2 [e] Halloran et al. (1989) DMT 3 [g] De Zoysa et al. (1991) EBF 1 [e] Koella (1991) EBF 2 [g] Koella (1991) DMT 4 Burattini et al. (1993) RRM [b] [h] Richard et al. (1993) MER [i] Saul (1993) 70% 0.5 95% GHSD DMT 4 Gatton et al. [b ] (1996) [h] Gupta et al. [a ] (1994a, 1994b, 1996), Dye et al. 91% (1996), Gilbert et al. (1998) S&S [j] Mackinnon (1997) [b] [h] Nakazawa et al. 95% (1998) [a] [a ] [b] [b ] [c] (Zooprophylaxis) [d] [e]

5.3 45 (y Y) (5.1) (an /N) (Y) (1 y) Y(1 y) (b) N /N (the net rate of transmission) γy (5.2) 1 (a) (1 Y) (y) (c) µy basic reproductive rate; R 0 z 0 R 0 = ma2 bc µγ (5.3) γ 1/γ a m am/γ c amc/γ 1/µ ab/µ (amc/γ)(ab/µ) a (5.3) (5.3) (5.1)(5.2) y Y (Y, y) dy/dt = 0 Y y Y dy/dt = 0 y Y y 2 4 y Y y = (R 0 1) [R 0 + (ac/µ)] (5.4)

46 5 Y = [(R 0 1)/R 0 ][(ac/µ)/(1 + ac/µ)] (5.5) Y ac/µ Y y Y m a (stable endemic malaria) ac/µ Y ac/µ (Macdonald, 1957) Y y R 0 < 1 ac/µ PNG An. punctulatus 2.9 An. minimus 4.4 An. gambiae 3.9 An. gambiae 0.47 µ DDT 2 a 1 = 0.25 µ 1 = 0.05 a 2 = 0.5 µ 2 = 0.5 a/µ c = 1 1/2(a 1 /µ 1 + a 2 /µ 2 ) = 3.0 2 a µ [1/2(a 1 + a 2 )]/[1/2(µ 1 + µ 2 )] = 1.4 (vectorial capacity) R 0 (Molineaux et al., 1979)

5.3 47 (vectorial capacity) Garrett-Jones(1964) t n C(t) C m a p C = ma 2 pn/( ln p) ac/µ y 1.0 (5.5) R 0 ac/µ 0 Y 1 2 3% 5.3.2 (A) (A1) (A2) (A3) (A4) (A5) (A6) (A6) Richard (1993) (B) (A1) (A6) 95% 0 WHO Garki 1998 SEIR A (C) 1 1 SUMMERS VESPERS (Burattini et al., 1993)

48 5 7 1995 1996 (1) (2) (3) 7 80% 62 89 2 β SEIR SEI p S( )*(1 p)*i( ) a β 0.3 p 95% β = 0.8 p 70% 60% β = 0.8 p =95% 100% a R http://phi.ypu.jp/swtips/rsim/malariasim.r http://phi.ypu.jp/swtips/rsim/malsimauto.dat

49 6 6.1 1910 P. falciparum 1990 WHO 1 250 mg 2 CDC CDC DEET[N,N- ] P. vivax (G6PD) G6PD (Qinghaosu) (artemisinine) (artemether)

50 6 6.2 (1881 ) 1,262 /1,000 (1869 ) 9 1904 $ 320,000 1 2 68 /1,000 1914 1948 WHO DDT WHO (Impregnated bednet; permethrin deltamethrin ) 6.3 B T Playfair,, 1997 (1) (1 ) A (Salk) (2)

6.3 51 (Sabin) (BCG) (2 ) (3) (3 ) (3 ) B (HBs ) (3 ) (4) B NANP (5) HIV (6) (7) DNA DNA 47 kda DNA 1990 (4) (1) (Ballou et al., 1987; Herrington et al., 1987) (2) mrna NANP (Patarroyo et al., 1988) (3)MSP1 1993 Patarroyo Phase III Wewak 1993 ; transmission blocking vaccine 1990 DNA MSP1 region 17 19 kda region 3 region 17 Gupta region 17+region 16 1997 Patarroyo HLA NK

52 6 1998 DNA Stephen L. Hoffman ProNAS Science 10 16 (Wang et al., 1998) 1990 1994 DNA CD8+ T DNA DNA T CD8+ T DNA DNA CD8+ T nef, rev, tat env, rev DNA HIV T HIV T 20 20 (PfCSP) DNA 20, 100, 500, 2500 µg alternate deltoids DNA 20 T HLA PfCSP in vitro PfCSP (ALVAC) in vitro PfCSP 20 14 20 11 10 CD8+ T HLA-B35 CD8+ T CD4+ T CD8+ T 10% 500 2,500 20 11

6.3 53 in vitro 2000 10 Nature Medicine 11 (Daubersies et al., 2000) DNA (1) CSP (2) MSP RESA 1967 CSP PfLSA-3

55 7 Q&A http://eagle.pharm.okayama-u.ac.jp/joho/doc/howtoget.html 7.1 Q1 A1 P. falciparum 2000 11 13 7.2 Q2 A2 2000 10 Nature PCR RNA RNA McCarroll et al., 2000 DNA 2000

56 7 Q&A 2000 11 13 7.3 Q3 A3 Q4 A4 Q5 A5 Q6 A6 natural selection 2000 11 13 Murray et al. (1975) Oppenheimer et al. (1986) Kent and Dunn(1993) 2000 11 13 2000 11 13

7.3 57 Q7 A7 Q8 A8 Q9 A9 Q10 A10 2001 4 10 2003 10 15 2001 4 25 DDT 2001 12 5 strain 2001 12 12 WHO 2001 12 12

59 8 AIM Developing Team (1994) An estimation of climatic change effects on malaria. AIM Interim Paper, August 12, 1994, Tsukuba. Allison, A.C. (1954) Protection afforded by sickle-cell trait against subtertian malarial infection. British Medical Journal, 1: 290-294. (HbAS) Amor, D. and M. Richards (1992) Mefloquine resistant P. vivax malaria in PNG. Medical Journal of Australia, 156(12): 883. vivax Anderson R.M. and R.M. May (1992) Infectious Diseases of Humans. Oxford Univ. Press, Oxford. Areekul, S., Y. Chantachum, D. Matrakul and C. Viravan (1972) Serum haptoglobin levels in malaria. Southeast Asian Journal of Tropical Medicine and Public Health, 3: 505-510. Baer, A., L.E. Lie-Injo, Q.B. Welch and A.N. Lewis (1976) Genetic Factors and Malaria in the Temuan. American Journal of Human Genetics, 28: 179-188. Ballou, W.R., S.L. Hoffman, J.A. Sherwood, M.R. Hollingdale, F.A. Neva, W.T. Hockmeyer, D.M. Gordon, I. Schneider, R.A. Wirtz, J.F. Young, G.F. Wasserman, P. Reeve, C.L. Diggs and J.D. Chulay (1987) Safety and efficacy of a recombinant DNA Plasmodium falciparum sporozoite vaccine. Lancet,1: 1277-1281. Bekessy, A., L. Molineaux and J. Storey (1976) Estimation of incidence and recovery rates of Plasmodium falciparum from longitudinal data. Bulletin of the World Health Organization, 54: 685-693. Boreham, P.F.L., J.K. Lenahan, G.R. Port and I.A. Macgregor (1981) Haptoglobin polymorphism and its relationship to malaria infection in the Gambia. Tropical Medicine and Hygiene, 75: 193-200. Transactions of the Royal Society of Brabin, L. and B.J. Brabin (1990) Malaria and glucose-6-phosphate dehydrogenase deficiency in populations with high and low spleen rates in Madang, Papua New Guinea. 40(1): 15-21. Human Heredity, Bradley, D.J., C.I. Newbold and D.A. Warrell (1990) Malaria. In: Oxford Textbook of Medicine, Oxford University Press, Oxford. pp. 5.474-5.502.

60 8 Braverman, Y., U. Kitron and R. Killick-Kendrick (1991) Attractiveness of vertebrate hosts to Culex pipiens (Diptera: Culicidae) and other mosquitoes in Israel. Journal of Medical Entomology, 28: 133-138. Brown, P.J. (1986) Cultural and genetic adaptations to malaria: problems of comparison. Human Ecology, 14: 311-332. Butcher, G.A. (1992) HIV and malaria: A lesson in immunology? Parasitology Today, 8: 314-318. Burattini, M.N., E. Massad and F.A.B. Coutinho (1993) Malaria transmission rates estimated from serological data. Epidemiology and Infection, 111: 503-523. Burattini, M.N., E. Massad, F.A.B. Coutinho and R.G. Baruzzi (1993) Malaria prevalence amongst Brazilian Indians assessed by a new mathematical model. Epidemiology and Infection, 111: 525-537. Carnevale, P., J.L. Frezil, M.F. Bosseno, F. le Pont and E. Lancien (1978) Etude de l agressivite d Anopheles gambiae A en fonction de l age et du sexe des sujets humains. Bulletin of the World Health Organization, 56: 147-154. Cattani, J.A., J.L. Tulloch, H. Vrbova, et al. (1986) The epidemiology of malaria in a population surrounding Madang, Papua New Guinea. American Journal of Tropical Medicine and Hygiene, 35: 3-15. Charlwood, J.D. and P.M. Graves (1987) The effect of permethrin-impregnated bednets on a population of Anopheles farauti in coastal Papua New Guinea. Medical and Veterinary Entomology, 1: 319-327. Clark, I.A. and Cowden, W.B. (1999) Why is the pathology of falciparum worse than that of vivax malaria? Parasitology Today, 15(11): 458-461. Collett, D. and Lye, M.S. (1987) Modelling the effect of intervention on the transmission of malaria in East Malaysia. Statistics in Medicine, 6: 853-861. MDA Daubersies, P., A.W. Thomas, P. Millet, K. Brahimi, J.A. Langermans, B. Ollomo, L.B. Mohamed, B. Slierendregt, W. Eling, A. Van Belkum, G. Dubreuil, J.F. Meis, C. Guerin-Marchand, S. Cayphas, J. Cohen, H. Gras-Masse and P. Druilhe (2000) Protection against Plasmodium falciparum malaria in chimpanzees by immunization with the conserved pre-erythrocytic liver-stage antigen 3. Nature Medicine, 6: 1258-1263. Davidson, G. and C.C. Draper (1953) Field study of some of the basic factors concerned in the transmission of malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene, 47: 522-535. De Zoysa, A.P.K., C. Mendis, A.C. Gamage-Mendis, S. Weerasinghe, P.R.J. Herath and K.N. Mendis (1991) A mathematical model for Plasmodium vivax malaria transmission: estimation of the impact of transmission-blocking immunity in an endemic area. Bulletin of the World Health Organization, 69(6): 725-734. Dietz, K., Molineaux, L. and Thomas, A. (1974) A malaria model tested in the African savannah. Bulletin of the World Health Organization, 50: 347-357.

61 DMT Division of Control of Tropical Diseases (1990) World malaria situation, 1988. World Health Statistics Quarterly, 43: 68-79. Durham, W.H. (1991) Coevolution: genes, culture, and human diversity. Stanford University Press, Stanford, California. Dye, C., and G. Hasibeder (1986) Population dynamics of mosquito-borne disease: effects of flies which bite some people more frequently than others. Transactions of the Royal Society of Tropical Medicine and Hygiene, 80: 69-77. Dye, C. and B.G. Williams (1997) Multigenic drug resistance among inbred malaria parasites. Proceedings of the Royal Society of London: Ser. B, 264: 61-67. Earle, W.C., M. Perez, J. Del Rio and C. Arzola (1939) Observations on the course of naturally acquired malaria in Puerto Rico. Puerto Rico Journal of Public Health and Tropical Medicine, 14: 391-406. Elderkin, R.H., D.P. Berkowitz, F.A. Farris, C.F. Gunn, F.J. Hickernell, S.N. Kass, F.I. Mansfield and R.G. Taranto (1977) On the steady state of an age-dependent model for malaria. In: Lakshmikantham, V. [ed.] Non-linear systems and applications, pp. 491-512. Academic Press, London. Fidock DA et al.: Mutations in the P. f. digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol. Cell, 6: 861-871, 2000. pfcrt Fontenille, D., J.P. Lepers, G.H. Campbell, M. Coluzzi, I. Rakotoarivony and P. Coulanges (1990) Malaria transmission and vector biology in Manarintsoa, high plateaux of Madagascar. American Journal of Tropical Medicine and Hygiene, 43: 107-115. Forsyth, K.P., R.F. Anders, J.A. Cattani and M.P. Alpers (1989) Small area variation in prevalence of an S-antigen serotype of Plasmodium falciparum in villages of Madang, Papua New Guinea. American Journal of Tropical Medicine and Hygiene, 40: 344-350. Gabra, M.S., D. Grossiord, L.H. Perrin, A. Shaw, A. Cheung and I.A. McGregor (1986) Defined Plasmodium falciparum antigens in malaria serology. Bulletin of World Health Organization, 64: 889-896. Garrett-Jones, C. (1964) The human blood index of malaria vectors in relation to epidemiological assessment. Bulletin of the World Health Organization, 30: 241-261. Vectorial capacity Gatton, M. et al. (1996) A model for predicting the transmission rate of malaria from serological data. J. Math. Biol., 34: 878-888. Gilbert, I.H., H.K. Gouck and H. Smith (1966) Attactiveness of men and women to A. aegypti and relative protective time obtained with deet. Florida Entomology, 49: 53-66. Gilbert, S.C. et al. (1998) Association of malaria parasite population structure, HLA, and immunological antagonism. Science, 279: 1173-1177. Golenser, J.J., J.J. Miller, D.T. Spiro, T. Novak and M. Chevion (1983) Inhibitory effect of a fava component on the in vitro development of Plasmodium falciparum in normal and G-6PD deficient

62 8 erythrocytes. Blood, 618: 507-510. Gupta, M. and A.N.R. Chowdhuri (1980) Relationship between ABO blood groups and malaria. Bulletin of the World Health Organization, 58: 913-915. Gupta, S. et al. (1994) Parasite virulence and disease patterns in Plasmodium falciparum malaria. Proceedings of National Academy of Sciences, USA, 91: 3715-3719. Gupta, S. et al. (1996) How to bednets influence the transmissibility of Plasmodium falciparum? Parasitology Today, 12: 89-90. Halloran, M.E., C.J. Struchiner and A. Spielman (1989) Modelling malaria vaccines II: population effects of stage-specific malaria vaccines dependent on natural boosting. Mathematical Biosciences, 94: 115-149. Harbach, R.E. (2004) The classification of genus Anopheles (Diptera: Culicidae): a working hypothesis of phylogenetic relationships. Bulletin of Entomological Research, 94: 537-553. Harbach, R.E. and T.M. Howard (2007) Index of currently recognized mosquito species (Diptera: Culicidae). European Mosquito Bulletin, 23: 1-66. Harbach, R.E. and I.J. Kitching (1998) Phylogeny and classification of the Culicidae (Diptera). Systematic Entomology, 23: 323-370. Hellriegel, B. (1992) Modelling the immune response to malaria with ecological concepts: shortterm behaviour against long-term equilibrium. Proceedings of the Royal Society of London Series B: Biological Sciences, 250(1329): 249-256. Herrington, D.A., D.F. Clyde, G. Losonsky, M. Cortesia, J.R. Murphy, J. Davis, S. Baqar, A.M. Felix, E.P. Heimer, D. Gillessen, E. Nardin, R.S. Nussenzweig, V. Nussenzweig, M. Hollingdale and M.M. Levine (1987) Safety and immunogenicity in man of a synthetic peptide malaria vaccine aginst Plasmodium falciparum sporozoites. Nature, 328: 257-259. Heywood, A., S. Oppenheimer, P. Heywood and D. Jolley (1989) Behavioral effects of iron supplementation in infants in Madang, Papua New Guinea. American Journal of Clinical Nutrition, 50: 630-640. Hill, A.V.S., D.B. Whitehouse, D.K. Bowden, D.A. Hopkinson, C.C. Draper, T.E.A. Peto, J.B. Clegg and D.J. Weatherall (1987) Ahaptoglobinaemia in Melanesia: DNA and malarial antibody studies. Transactions of the Royal Society of Tropical Medicine and Hygiene, 81: 573-577. Inhorn, M.C. and P.J. Brown (1990) The anthropology of infectious disease. Annual Reviews in Anthropology, 19: 89-117. Ishikawa, H., A. Kaneko and A. Ishii (1996) Computer simulation of a malaria control trial in Vanuatu using a mathematical model with variable vectorial capacity. Japanese Journal of Tropical Medicine and Hygiene, 24: 11-19. Katz, S.H. (1987) Food and biocultural evolution: a model for the investigation of modern nutritional problems. In: Johnston, F.E., ed. Nutritional Anthropology, Alan R. Liss, Inc., New York, pp. 41-63. Kent, S. and Dunn, D. (1993) Etiology of hypoferremia in a recently sedentary Kalahari village. American Journal of Tropical Medicine and Hygiene, 48: 554-567.

63 Kingsolver, J.G. (1987) Mosquito host choice and the epidemiology of malaria. Naturalist, 130: 811-827. Knell, A.J. [Ed.] (1991) Malaria. Oxford University Press, Oxford. The American Koella, J.C. (1991) On the use of mathematical models of malaria transmission. Acta Tropica, 49: 1-25. Kondrashin, A.V. and N.L. Kalra (1987) Malaria as Anthropo-Ecosystem. Part I: General cencept. Journal of Communicable Diseases, 20: 79-86. Kondrashin, A.V. and N.L. Kalra (1988) Malaria as Anthropo-Ecosystem. Part II: Diversity of malaria infection sub-system. Journal of Communicable Diseases, 20: 349-359. Kondrashin, A.V. and N.L. Kalra (1989) Malaria as Anthropo-Ecosystem. Part III: Diversity of MAES. Journal of Communicable Diseases, 21: 62-70. Leper, J.P., P. Deloron, D. Fontenille and P. Coulanges (1988) Reappearance of falciparum malaria in central highland plateaux of Madagascar. Lancet, 1: 586. Leper, J.P., D. Fontenille, M.D. Andriamangatiana-Rason, P. Deloron and P. Coulanges (1990) Facteurs ecologiques de la recrudescence du paludisme a Madagascar. Bulletin de la Societe de Pthologie Exotique, 83: 330-341. Livingstone, F.B. (1958) Anthropological implications of sickle cell gene distribution in West Africa. American Anthropologist, 60: 533-562. Lotka, A. (1923) Contribution of the analysis of malaria epidemiology. American Journal of Hygiene, 3(Suppl.1): 1-21. MacCormack, C.P. (1984) Human ecology and behaviour in malaria control in tropical Africa. Bulletin of the World Health Organization, 62(Suppl.): 81-87. Macdonald, G. (1950) The analysis of infection rates in diseases in which superinfection occurs. Tropical Diseases Bulletin, 47(10): 907-915. Ross Macdonald, G. (1955) The measurement of malaria transmission. Proceedings of the Royal Society of Medicine, 48: 295-301. Ross Macdonald, G. (1957) The epidemiology and control of malaria. Oxford University Press, London. Mackinnon, Margaret J. (1997) Survival probability of drug resistant mutants in malaria parasites. Proc. R. Soc. London B., 264: 53-59. Maibach, H.I., A.A. Khan, W.G. Strauss and T.R. Pearson (1966) Attraction of anhydriotic subjects to mosquitoes. Archives of Dermatology, 94: 215-217. McCarroll, L., M.G. Paton, S.H.P.P. Karunaratne, H.T.R. Jayasuryia, K.S.P. Kalpage and J. Hemingway (2000) Insecticides and mosquito-borne disease: Insecticide resistance in mosquitoes can also interfere with developing parasites. Nature, 407: 961-962. Moir, J.S., P.A. Garner, P.F. Heywood and M.P. Alpers (1989) Mortality in a rural area of Madang Province, Papua New Guinea. Annals of Tropical Medicine and Parasitology, 83: 305-319. Molineaux, L., Cornille-Brogger, R., Mathews, H.M. and Storey, J. (1978) Longitudinal serological study of malaria in infants in the West African savanna. Comparisons in infants exposed to, or protected from, transmission from birth. Bulletin of the World Health Organization, 56(4):

64 8 573-578. DMT Molineaux, L., Dietz, K. and Thomas, A. (1978) Further epidemiological evaluation of a malaria model. Bulletin of the World Health Organization, 56(4): 565-571. DMT Molineaux, L. and G. Gramiccia (1980) The Garki Project. World Health Organization, Geneva. Molineaux, L., Shidrawi, G.R., Clarke, J.L., Boulzaguet, J.R. and Ashkar, T.S. (1979) Assessment of insecticidal impact on the malaria mosquito s vectorial capacity, from data on the man-biting rate and age-composition. Bulletin of the World Health Organization, 57(2): 265-274. DMT Moskovskij, S.D. (1967) A further contribution to the theory of malaria eradication. Bulletin of the World Health Organization, 36: 992-996. Murray, M.J., A.B. Murray, N.J. Murray and M.B. Murray (1975) Refeeding-malaria and hyperferraemia. Lancet, 1: 653-654. Nakazawa, M., R. Ohtsuka, T. Kawabe, T. Hongo, T. Suzuki, T. Inaoka, T. Akimichi, S. Kano and M. Suzuki (1994) Differential malaria prevalence among villages of the Gidra in lowland Papua New Guinea. Tropical and Geographical Medicine, 46(6): 350-354. Nakazawa, M., R. Ohtsuka, T. Kawabe, T. Hongo, T. Inaoka, T. Akimichi and T. Suzuki (1996) Iron nutrition and anaemia in malaria endemic environment: Haematological investigation of the Gidra-speaking population in lowland Papua New Guinea. British Journal of Nutrition, 76: 333-346. Nakazawa, M., H. Ohmae, A. Ishii and J. Leafasia (1998) Malaria infection and human behavioral factors: A stochastic model analysis for direct observation data in the Solomon Islands, American Journal of Human Biology, 10: 781-789. Najera, J.A. (1974) A critical review of the field application of a mathematical model of malaria eradication. Bulletin of the World Health Organization, 50: 449-457. Nagel, R.L. (1990) Innate resistance to malaria: the intererythrocytic cycle. Blood Cells, 16: 321-339. Nedelman, J. (1984) Inoculation and recovery rates in the malaria model of Dietz, Molineaux, and Thomas. Mathematical Biosciences, 69: 209-233. DMT Ohmae, H., F. Kawamoto, A. Ishii, J. Leafasia and N. Kere (1991) Detecting splenomegaly by ultrasound. Lancet, 338: 826-827. Ohtsuka, R. (1983) Oriomo Papuans: Ecology of Sago-Eaters in Lowland Papua. Univ. Tokyo Press, Tokyo. Ohtsuka, R. and T. Suzuki [Eds.] (1990) Population ecology of human survival. Bioecological studies of the Gidra in Papua New Guinea University of Tokyo Press, Tokyo. Oppenheimer, S.J., F.D. Gibson, S.B. Macfarlane, J.B. Moody and R.G. Hendrickse (1984) Iron supplementation and malaria. Lancet, 1: 388-390. Oppenheimer, S.J., F.D. Gibson, S.B. Macfarlane, J.B. Moody, C. Harrison, A. Spencer and O. Bunari (1986) Iron supplementation increases prevalence and effects of malaria: report on clinical studies in Papua New Guinea. Transactions of the Royal Society of Tropical Medicine and Hygiene,

80: 603-612. Parent, G., et al. (1987) Paludisme, anemie et etat nutritionnel: etude longitudinale et interactions en zone Sahelienne (Senegal). Bulletin de la Societe de Pathologie Exotique, 80(3 Pt 2): 546-560. Patwari, A., J. Aneja and S. Ghosh (1979) Serum haptoglobin in childhood malaria. Pediatrics, 16: 665-667. Indian Peters, W. (1982) Antimalarial drug resistance: An increasing problem. British Medical Bulletin, 38(2): 187-192. 10 Richard, A., S. Richardson and J. Maccario (1993) A three-state Marcov model of Plasmodium falciparum parasitemia. Mathematical Biosciences, 117: 283-300. Rosemberg, E.B., G.T. Strickland, S.L. Young and G.E. Whalen (1973) IgM antibodies to red cells and autoimmune anaemia in patients in malaria. American Journal of Tropical Medicine and Hygiene, 22: 146-152. Ross, R. (1916) An application of the theory of probabilities to the study of a priori pathometry Part I. Proceedings of the Royal Society of London: Ser A, 92: 204-230. Rougement, A., M. Bouvier, L. Perrin, S. Yerly, E. Brenner, I. Srivastava, O. Dumbo, G. Soula, B. Tamoura, A. Dolo, B. Kodio and P. Ranque (1988) Hypohaptoglobinaemia as an epidemiological and clinical indicator for malaria. Lancet, 2: 709-712. Rougement, A., M. Quilici, P. Rangue and P. Pene (1974) Taux d haptoglobine, paludisme et anemie chez l adulte africain. 1. Bulletin de la Societe de Pathologie Exotique, 67: 52-57. Rougement, A., M. Quilici, P. Rangue and P. Pene (1974) Taux d haptoglobine, paludisme et anemie chez l adulte africain. 2. Bulletin de la Societe de Pathologie Exotique, 67: 370-377. Ruwende, C., S.C. Khoo, R.W. Snow, S.N. Yates, D. Kwiatkowski, S. Gupta, P. Warn, C.E. Allsopp, S.C. Gilbert, N. Peschu, et al. (1995) Natural selection of hemi- and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature, 376(6537): 246-249. Sato, K., S. Kano, H. Yamaguchi, F.M. Omer, S.H. El Safi, A.A. El Gaddal and M. Suzuki (1990) An ABC-ELISA for malaria serology in the field. Hygiene, 42: 24-27. ABC-ELISA American Journal of Tropical Medicine and Sattenspiel, L. (1990) Modeling the spread of infectious disease in human populations. Yearbook of Physical Anthropology, 33: 245-276. Saul, A. (1993) Minimal efficacy requirements for malarial vaccines to significantly lower transmission in epidemic or seasonal malaria. Acta Tropica, 52: 283-296. Schuurkamp, G.J., P.E. Spicer, R.K. Kereu, P.K. Bulungol and K.H. Rieckmann (1992) Chloroguine-resistant Plasmodium vivax in Papua New Guinea. Transactions of the Royal Society of Tropical Medicine and Hygiene, 86(2): 121-122. vivax Sota, T. and M. Mogi (1989) Effectiveness of zooprophylaxis in malaria control: a theoretical inquiry, with a model for mosquito populations with two bloodmeal hosts. Medical and Veterinary 65

66 8 Entomology, 3: 337-345. Trape, J.F. and A. Fribourg-Blanc (1988) Ahaptoglobinemia in African populations and its relation to malaria endemicity. American Journal of Epidemiology, 127(6): 1282-1288. Trape, J.F., A. Fribourg-Blanc, M.F. Bosseno, M. Lallement, R. Engler and J. Mouchet (1985) Malaria, cause of ahaptoglobinaemia in Africans. Transactions of the Royal Society of Tropical Medicine and Hygiene, 79: 430-434. Tsuchida, H., K. Yamaguchi, S. Yamamoto and I. Ebisawa (1982) Quartan malaria following splenectomy 36 years after infection. American Journal of Tropical Medicine and Hygiene, 31: 163-165. Vercruysse, J. (1985) Etude entomologique sur la transmission du paludisme humain dans le bassin du Fleuve Senegal (Senegal). Ann. Soc. belge Med. trop., 65(Supp. 2): 171-179. Voller, A. (1971) The detection and measurement of malarial antibodies. Transactions of the Royal Society of Tropical Medicine and Hygiene, 65: 111-124. Wang, Ruobing, D.L. Doolan, T.P. Le, R.C. Hedstorm, K.M. Coonan, Y. Charoenvit, T.R. Jones, P. Hobert, M. Margalith, J. Ng, W.R. Weiss, M. Sedegah, C. de Taisne, J.A. Norman and S.L. Hoffman (1998) Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science, 282: 476-480. Ward, R.A. (1963) Genetic susceptibility of mosquitoes to malarial infection. Experimental Parasitology, 13: 328-341. Warhurst, D.C. (2001) Ediotorial: A molecular marker for chloroquine-resistant falciparum malaria. New England J. Med., 344: 299-302. Waters, A.P. and T.F. McCutchan (1989) Rapid, sensitive diagnosis of malaria based on ribosomal RNA. Lancet, 1(8651): 1343-1346. Wood, C.S. (1976) ABO blood groups related to selection of human hosts by yellow fever vector. Human Biology, 48: 337-341. Wood, C.S. and G.A. Harrison (1972) Selective feeding of Anopheles gambiae according to ABO blood group status. Nature, 239: 105. Wood, C.S. (1979) Human Sickness and Health: A Biocultural View, Mayfield, Palo Alto, CA. World Health Organization (1991) Malaria. World Health, 1991 (September/October). World Health Organization (1997) World Malaria situation in 1994 Part I. Weekly Epidemiological Record, 72: 269-274. World Health Organization (1997) World Malaria situation in 1994 Part II. Weekly Epidemiological Record, 72: 277-283. World Health Organization (1997) World Malaria situation in 1994 Part III. Weekly Epidemiological Record, 72: 285-290. World Health Organization (1999) Malaria, 1982-1997. Weekly Epidemiological Record, 74: 265-270. Yerly, S., M. Bouvier, A. Rougement, I. Srivastava and L.H. Perrin (1990) Development of a haptoglobin ELISA. Its use as an indicator for malaria. Acta Tropica, 47: 237-244.

Yuthavong, Y., A. Bunyaratvej and S. Kamchonwongpaisan (1990) Increased susceptibility of malaria-infected variant erythrocytes to the mononuclear phagocyte system. Blood Cells, 16: 591-597. Zavortink, T. (1990) Classical taxonomy of mosquitoes a memorial of John N. Belkin. Journal of the American Mosquito Control Association, 6: 593-599. (1993).,. (1990).,, [ ].,, pp.67-82. (1995). [ ] [ ],,, pp. 30-34. (1992).. (1991).,. (1993).,, [ ] (1),,, pp.211-226. (1994)., 136: 119. (1998) -, 17(3): 6-9. (1991).,. (1979).,. pp. 1277-1311.,,,,,, [ ] (1983) 3.,. Technical term 67

69 Appendix A. Behavioral Protection Model Background Since the Ross-Macdonald model, enormous improvements have been added to the mathematical models on malaria transmission dynamics. However, as Sattenspiel (1990) pointed out, human behavioral factors are essential for malaria transmission but have rarely been involved in these mathematical models. The Model and Simulation Design The present study aimed to combine stochastic fluctuation with the Susceptible-Exposed-Infective- Recovered (SEIR) model because human behavior has a nature of random fluctuation. Therefore expected numbers of those who do protective behavior and who do not in Susceptible and Infective population were calculated by random function with binomial distribution. The other major assumptions were, 1) total numbers of humans and mosquitoes were fixed, 2) mosquitoes can never recover if infected by parasites, 3) every bites to Susceptible humans by Infected mosquitoes lead to transition of those humans to Exposed status. Examined conditions were expected proportion of protection (12% as baseline, and 70% to 95% according to the extent of compliance) and the efficiency of protective methods (highly effective and uneffective). These mechanisms were implemented as the computer program written in C language and the 2 years transmissions were run 50 times for each condition in the simulation experiment of which results are shown below. SEIR model has been developed as a deterministic model, but it is possible to expand to incorporate stochastic nature of human behavior *1. The expected number of people who took precautions on any one day was calculated by a random function with binomial distribution. We assumed a fixed population size, because the duration of simulation was short enough to allow us to ignore population growth. However, birth was so important as a supply of nonimmune individuals that the model actually assumed a steady population. In other words, the birth rate was set to equal the death rate. Let N = N s + N e + N i + N r for the human population and M = M s + M e + M i for the mosquito population, where each subscript indicates the corresponding compartment. Mosquitoes were assumed not to recover once infected by the malaria parasite. Every bite by an infected mosquito was assumed to lead to transmission. This assumption was necessary to avoid over complexity of the model, although this might have caused an overestimation of transmission. Sets of differential equations were formulated as follows. *1 First, the human population was divided into two subgroups. One employed protective behavior against malaria, the other did not. However, these groups were not permanently fixed. If a person showed protective behavior on a Monday, that person might not do so on the Tuesday.

70 8 Appendix A. Behavioral Protection Model dn s dt = M i M αb(n s, 1 pβ) + ω(n N s ) + 1 ν N r (8.1) dn e dt = M i M αb(n s, 1 pβ) 1 λ N e ωn e (8.2) dn i = 1 λ N e 1 δ N i ωn i (8.3) dt dn r dt = 1 δ N i 1 ν N r ωn r (8.4) dm s = a dt M B(N i, 1 pβ)m s + µ(m M s ) (8.5) dm e = a dt M B(N i, 1 pβ)m s 1 τ M e µm e (8.6) dm r dt = 1 τ M e µm r (8.7) where a denotes the human biting index (the rate per mosquito at which humans are bitten per night), B(N, p) is a random function with binomial distribution (the expected number of individuals experiencing an event when that event occurs independently with probability p for N individuals), p the probability that people adopt protective behavior, β the efficiency of the protective measure, ω the human daily mortality, ν the mean duration of immunity, λ the mean duration of the latent period, δ the mean duration of being infectious, which overlaps the period with symptoms, µ the daily mortality of mosquitoes, and τ is the mean duration of the incubation period, which is the time for the parasites to grow up from gametes in the gut to sporozoites in the salivary glands. The model was implemented as a program written in C language and run on the IBM- PC compatible computer (however, http://phi.med.gunma-u.ac.jp/swtips/rsim/malariasim.r). now it is rewritten as an R program and available from Results and Discussion Major results were, 1) uneffective protection even of 95% compliance only achieved about 4% reduction of mean parasite rate, 2) highly effective protection of 70% compliance achieved about 13% reduction of mean parasite rate, and 3) highly effective protection of 95% compliance achieved eradication in all simulation runs. The necessity of more than 90% compliance to eradicate malaria showed good agreement with the recent models (Saul, 1993; Gupta and Snow, 1996). The results strongly suggested the necessity of not only alternative protection to bed net distribution but also of health education. Literature Cited Gupta S, Snow RW (1996) How do bednets influence the transmissibility of Plasmodium falciparum? Parasitology Today, 12: 89-90. Nakazawa, M., H. Ohmae, A. Ishii and J. Leafasia (1998) Malaria infection and human behavioral factors: A stochastic model analysis for direct observation data in the Solomon Islands, American Journal of Human Biology, 10: 781-789. Sattenspiel L (1990) Modeling the spread of infectious disease in human populations. Yearbook of Physical Anthropology, 33: 245-276.

71 Saul A (1993) Minimal efficacy requirements for malarial vaccines to significantly lower transmission in epidemic or seasonal malaria. Acta Tropica, 52: 283-296.