Similar documents
( )


04.™ƒ”R/’Ô”�/’Xfl©

RSA署名方式の安全性を巡る研究動向について

21 Key Exchange method for portable terminal with direct input by user


<4D F736F F D20838A B F955C8E8682A982E796DA8E9F914F5F A815B FD B A5F E646F63>

(Requirements in communication) (efficiently) (Information Theory) (certainly) (Coding Theory) (safely) (Cryptography) I 1

a m 1 mod p a km 1 mod p k<s 1.6. n > 1 n 1= s m, (m, = 1 a n n a m 1 mod n a km 1 mod n k<sn a 1.7. n > 1 n 1= s m, (m, = 1 r n ν = min ord (p 1 (1 B


Block cipher



., ( [22]) ( ),.,,., 90 ( [38]),. ( [12]).,,..,.,,. 2,. 3,. 4,.,,. [20], [31],,. ([21], [34], [36], [49] ),,.,.,. 2

2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name Visualization of Code-Breaking Group Name Implemati

特集_03-07.Q3C

2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name Visualization of Code-Breaking RSA Group Name RSA C

#2 (IISEC)

ICカードに利用される暗号アルゴリズムの安全性について:ENV仕様の実装上の問題点を中心に


Proposal of addition of new cipher suites to TLS to support Camellia, EPOC, and PSEC Shiho Moriai NTT Laboratories th


楕円曲線暗号と RSA 暗号の安全性比較

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

電子マネー・システムにおけるセキュリティ対策:リスク管理に焦点を当てて

<4D F736F F D20838A B F955C8E8682A982E796DA8E9F914F E718F9096BC816A5F E646F63>

将来の暗号技術に関する安全性要件調査報告書

2012 A, N, Z, Q, R, C

genus 2 Jacobi Pila Schoof 42 Adleman Huang Gaudry Harley l genus 2 Jacobi 17 Jacobi Spallek 52 theta CM Jacobi genus2 Wang 61 Weber 60 Wamelen

[I486S] 暗号プロトコル理論

ISO/IEC 9798プロトコルの安全性評価

1 UTF Youtube ( ) / 30

03.›F“ª/‚SŒÊŁÏ“X*

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

:00-16:10



量子暗号通信の仕組みと開発動向

katagaitai workshop winter

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p


II

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

9_18.dvi



Literacy 2 Mathematica Mathematica 3 Hiroshi Toyoizumi Univ. of Aizu REFERENCES [1] C.P Williams [2] [3] 1 Literacy 2 Mathematica Ma

Bulletin of JSSAC(2014) Vol. 20, No. 2, pp (Received 2013/11/27 Revised 2014/3/27 Accepted 2014/5/26) It is known that some of number puzzles ca

2. Eades 1) Kamada-Kawai 7) Fruchterman 2) 6) ACE 8) HDE 9) Kruskal MDS 13) 11) Kruskal AGI Active Graph Interface 3) Kruskal 5) Kruskal 4) 3. Kruskal

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,


set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9..


TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of

9_21.dvi

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen

1 DHT Fig. 1 Example of DHT 2 Successor Fig. 2 Example of Successor 2.1 Distributed Hash Table key key value O(1) DHT DHT 1 DHT 1 ID key ID IP value D

ばらつき抑制のための確率最適制御

Pari-gp /7/5 1 Pari-gp 3 pq

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :


1 4 4 [3] SNS 5 SNS , ,000 [2] c 2013 Information Processing Society of Japan

(Visual Secret Sharing Scheme) VSSS VSSS 3 i

2 HI LO ZDD 2 ZDD 2 HI LO 2 ( ) HI (Zero-suppress ) Zero-suppress ZDD ZDD Zero-suppress 1 ZDD abc a HI b c b Zero-suppress b ZDD ZDD 5) ZDD F 1 F = a

2014 (2014/04/01)

19 Systematization of Problem Solving Strategy in High School Mathematics for Improving Metacognitive Ability

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x


Wi-Fi Wi-Fi Wi-Fi Wi-Fi SAS SAS-2 Wi-Fi i

ICカード利用システムにおいて新たに顕現化したPre-play attackとその対策

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3

YMS-VPN1_User_Manual

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

数理解析研究所講究録 第1955巻

untitled

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

SEJulyMs更新V7

¥µ¥¤¥Ü¥¦¥º¡¦¥é¥Ü¥æ¡¼¥¹ À®²ÌÊó¹ð

<4D F736F F D B B BB2D834A836F815B82D082C88C60202D B2E646F63>


I

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

Koblitz Miller field Fp p prime field Fp E Fp Fp Hasse Weil 2.2 Fp 2 P Q R R P Q O P O R Q Q O R P P xp, yp Q xq, yq yp yq R=O

( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

Microsoft Excelを用いた分子軌道の描画の実習

IPSJ SIG Technical Report Secret Tap Secret Tap Secret Flick 1 An Examination of Icon-based User Authentication Method Using Flick Input for

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

paper.dvi

Vol.59 No (Sep. 2018) 1,a) , CPU CPU CPU CPU CASS 2 CASS General Constructions of Computer-aided Security Sch


ε ε x x + ε ε cos(ε) = 1, sin(ε) = ε [6] [5] nonstandard analysis 1974 [4] We shoud add that, to logical positivist, a discussion o

i

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

Vol. 29, No. 2, (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of

1

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1

Transcription:

IMES DISCUSSION PAPER SERIES Discuss ssion Paper No. 97-J-11 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 100-91 203

IMES Discuss ssion Paper Series 97-J-11 1997 7 JEL : L86, Z00 * ** (E-mail: sakurai@csce.kyushu-u.ac.jp) NTT

... 1 I... 3 1... 3 2... 5 (1)... 5 (2)... 5 (3)... 8 (4)... 10 3... 14 (1)... 14 (2)... 16 II... 19 1... 20 (1)RSA... 21 (2)Rabin... 31 (3)... 33 2... 34 (1)ElGamal... 34 (2)EDLP DL... 35 (3)OAEP... 38 (4)... 39 3... 42 (1)ElGamal... 42 (2)ESIGN... 47 (3)DSA... 51 (4)Fiat-Shamir... 54 (5)EDLP... 55 (6)... 56 III... 58 1 FP... 58 (1)... 58 (2)... 59

2 DLP, EDLP... 63 (1)... 63 (2)... 64 (3)EDLP... 67 3... 69... 77... 78 1... 90 2... 92 3... 94

1 PGP(Pretty Good Privacy) RSA [1997] 1

2

I 1 common key cryptosystem public key cryptosystem 1976 Stanford Diffie and Hellman[1976] n C 2n n 2 LSI Mbps Mbps 3

M e E(e,M) d D(d,M) e E(e,M) d D(d,M) d e E C=E(e,M) M 2 M D(d,E(e,M))=M M E(e,D(d,M))=M ElGamal ESIGN one way function f f -1 C=f(M) f -1 (C) trapdoor trapdoor one way function f(,e) 2 4

f -1 (,d) d e d e d 2 (1) 1. A B M Step 1 Step 2 A B e B M C B B d B C M B A B B B (2) 1 D(M) 5

M D D(M) E M d A e A 1 X X E(X) RSA E(XY) = E(X)E(Y) II 1.(1) 2 Step 1 Step 2 Step 3 A M h d A S A (M, S) B B S A e A M h h(m) 6

M (M, S) M h S S h h(m) D E d A e A / 2 2 2 3 Step 1 A ID ID A K PA 7

Step 2 Step 3 Step 4 ID A,K PA K S S AC A A M,S A ID A,K PA,S AC B B ID A,K PA,S AC K P A M,S A A K PA A (IDA,KPA) KSA KS (IDA,KPA,SAC) (IDA,M,SA, KPA,SAC) KP IDA A ID KPA A KPB B SAC (IDA,KPA) SA M A B KSB 3 (3) A B A k AB B B B A A k AB B 8

RSA Merkle public key distribution system Diffie-Hellman[1976] DH DH A B DH p Step 1 Step 2 Step 3 Step 4 A [0, p-1] X A Y A = X A mod p (1) Y A B B [0, p-1] X B Y B = X B mod p (2) Y B A A X K = Y A B mod p = X A X B mod p (3) B K p Y Y= X mod p X p DH DH DH intruder-in-the-middle-attack C Y A Y B Y C = X C mod p A B A B B A DH Station-To-Station Diffie-van Oorschot-Wiener[1992] 9

RACE 3 Integrity Primitives Evaluation (RIPE) Rabin COMSET Brandt et al.[1990] EKE Encrypted Key Exchange Bellovin and Merritt[1992] ID Shamir[1985] DH RSA E. Okamoto[1989] KPS Key Predistribution System 4 Matsumoto-Imai[1988] RSA DLP Girault[1991] (4) (blind signature) Chaum[1983] Chaum[1982] RSA ElGamal Camenisch et al.[1994] Zero Knowledge Interactive Proof; ZKIP Okamoto and Ohta[1990] 3 RACE(The Research and Development in Advanced Communication Technologies in Europe) EC IBC(Integrated Broadband Communication) 4 KPS Eudora MS excahnge 10

RSA A M B B RSA (e,n) d Step 1 Step 2 Step 3 Step 4 A r B (e,n) X = Mr e mod n (4) X B B (d,n) Y = X d mod n = M d r mod n (5) Y A A Y r -1 B S = M d mod n A S B S e = M mod n (6) Step 3 r -1 r -1 r = 1 mod n GCD(r, n) = 1 Euclid A B Chaum cut-and-choose-methodology 1 ZKIP DLP Brands[1993] RSA Abe-Fujisaki[1996] DLP Abe-Camenisch[1997] cut-and-choosemethodology 1 undeniable signature 11

Chaum and van Antwerpen[1990] Step 1 Step 2 Step 3 Step 4 A B S A B r A A r d A B B A e A A S A d A A disapproval protocol 1 fail-stop signature Pfitzman and Waidner[1990] group signature Chaum[1991] 12

Step 1 Step 2 Step 3 Step 4 Step 5 Step 2 Chaum[1991] blind decryption Micali[1993] [1996] 13

RSA Micali[1993] ElGamal [1995] 3 1 bit (1) (direct attack) (chosen plaintext attack) (chosen ciphertext attack) (adaptive chosen ciphertext attack) 14

fault-based attack 1 bit 1 bit 1 0 bit Anderson[1996] 1 bit RSA ElGamal (total break) (general break) partial break 1 bit 1 bit bit 1 bit semantically secure Goldwasser and Micali[1984] tampering 15

f C=E(M) M =f(m) C =E(M ) f C=E(M) M =f(m) C =E(M ) nonmalleable RSA Rabin RSA Rabin RSA Goldwasser- Micali Naor-Yung OAEP RSA OAEP (2) direct attack known message attack 16

chosen message attack adaptive chosen message attack total forgery universal forgery selective forgery existential forgery 1 17

Rabin OSS OSS ElGamal RSA DSA Naor-Yung Bellare-Goldwasser 18

II 3 Diffie-Hellman RSA RSA Factoring Problem FP 20 RSA FP FP RSA FP Discrete Log Problem DLP DLP ElGamal ElGamal Schnorr DSA DLP FP FP DLP FP DLP Rabin Rabin Williams Rabin Bellare- Goldwasser McEliece MI Ong-Schnorr-Shamir ESIGN Fiat-Shamir 19

ESIGN Fiat-Shamir ESIGN Fiat-Shamir ESIGN Fiat-Shamir 1980 Optimal Asymmetric Encryption Padding OAEP FP DLP Schnorr ElGamal elliptic curve DLP EDLP EDLP DLP EDLP EDLP FP DLP EDLP FP DLP 1 RSA 20

Rabin Rabin Williams Obscure MI (1)RSA RSA MIT Rivest, Shamir, and Adleman[1978] RSA FP 20 RSA RSA 20 RSA RSA A B [ ] B p q 5 n=pq p-1 q-1 l=lcm(p-1,q-1) GCD(e,l)=1 e ed=1 (mod l) d d (e, n) 5 Fermat Solovay-Strassen Solovay and Strassen[1977] Miller-Rabin Rabin[1976] Adleman-Rumely Adleman et al.[1983] Atkin-Morain Atkin and Morain[1993] Goldwasser-Kilian Goldwassr and Kilian[1986] Adleman-Huang Adleman and Huang[1992] 21

[ ] M C C = M e (mod n) (7) [ ] C M M = C d (mod n) (8) RSA n p q n p q M C M = C d (mod n) d n (n) = (p-1)(q-1) n n Miller[1976] Kocher[1996] timing attack Diffie-Hellman DSA Kocher FP 20 T(p) T(p) = exp ((1.901+o(1))(log p) 1/3 (log log p) 2/3 ) p,q p,q 22

p,q p,q p-q (p 1) (q 1) p +, p -, q +, q - (p + 1)(p - 1) (q + 1) (q - 1) GCD(p-1,q-1) 4 Fermat p-1 p+1 III 1. f(x) = x e mod n f m (x) = x (9) m x e,n,x Simmons and Norris[1977] p,q C m y=f m-1 (C) C n(=pq),e,c C p,q,e Rivest[1978] Williams and Schmid[1979] p,q,e RSA (i) p = a p + 1, q = b q + 1 p = a p + 1, q = b q + 1 p, q, p, q 10 90 (ii) e l 1 (mod p q ) l p q Knuth[1979] Prob{x x k 1 (mod n)} 10-2l (10) 23

k 10 l log k n n l k p,q Knuth[1981] p-1 q-1 p,q (p q ) Rivest[1978] (i) p,q x x k = 1 (mod n) k p q 1/p q [1983] (10) m Rivest[1978] RSA (a) p q (b) (a) C p,q 1/p+1/q-1/pq (11) p q 10 100 (a) 2/10 100 n (b) 9 Blakley[1978], Blakley and Borosh[1979] RSA bit Chor and Goldreich[1984] 24

RSA bit RSA Boneh et al.[1996] RSA RSA x,y f(xy) = f(x) f(y) 25

6 Davida[1982], Denning[1984], Desmedt and Odlyzko[1985] M M r e M M = r e M mod n (12) M S = M d mod n (13) r M S r -1 = M d mod n (14) M M 1,M 2 M = M 1 M 2 mod n (15) d S 1 = M 1 mod n (16) d S 2 = M 2 mod n (17) M d S 1 S 2 = M mod n (18) 6 26

(15) RSA m n i = p i q i e i,d i (i=1,2,,m) p q p q m (e i,d i ) n = pq (e i,n) e i RSA Simmons[1983] #1 #2 M C 1 = M e 1 mod n (19) C 2 = M e 2 mod n (20) e 1 e 2 1 27

r s re 1 +se 2 = 1 r s r 0-1 (C 1 ) -r s C 2 = M re 1 +se 2 = M mod n (21) DeLaurentis[1984] n n d (a) n n n 1 b b 2 1 mod n (22) b 1 mod n (23) b+1 b-1 n n p,q n 1 b b c,k l c (n) = 2 k l (24) (n)= (p-1)(q-1) e 1 d 1 c,k l e 1 d 1-1 = c (n)= 2 k l (25) (b) (e 2,d 2 ) 28

e 1 e 1 d 1 =1 mod (n) d 1 (n) O(log 2 n) d 1 e 1 (n) d e 1 rd+se 1 = 1 r,s d (n) se 1 = 1 mod (n) e Coppersmith et al.[1996] e M Blum Liberherr Williams 3 #1, #2, #3 M C 1 = M 3 mod n 1 C 2 = M 3 mod n 2 C 3 = M 3 mod n 3 n 1, n 2, n 3 1 1.3 M 3 mod n 1 n 2 n 3 M 3 n 1 n 2 n 3 M 3 mod n 1 n 2 n 3 M 3 3 M n 1, n 2, n 3 Coppersmith et al.[1996] 29

(c 1,c 2 ) (m 1,m ) m m 2 1 2 m 2 = am 1 +b (26) e=3 c i = m i3 mod n (i=1,2) (27) m 1 b(c 2 +2a 3 c 1 -b 3 ) a(c 2 -a 3 c 1 +2b 3 ) 3a 3 bm 13 +3a 2 b 2 m 12 +3ab 3 m 1 = mod n 3a 3 bm 12 +3a 2 b 2 m 1 +3ab 3 = m 1 mod n (28) m 1,m 2 e m 1 e O(e log 2 e) e=32 m 2 m 1 k O((e+k) 3 k 2 ) Coppersmith et al.[1996] Boneh et al.[1996] tamper resistant device RSA Bao et al.[1996] bit bit M=C d mod n bit C 0 =C a0, C 1 =C a1, C 2 =C a2,..., C 511 =C a511 a i =2 i (i = 0,1,...,511) 30

bit M = C d mod n d511 d510 d0 = C 511 C 510 C i di C 0 mod n d= d 511 d 510... d.... d i 0 d i 1 bit d i d511 d510 di d0 M = C 511 C 510 C i C 0 mod n M = di C i mod n M di C i i bit d i (2)Rabin RSA RSA Rabin[1979] RSA Rabin A B [ ] B p q n=pq 0 b n b (p, q) (n, b) [ ] M C C = M(M+b) (mod n) (29) [ ] M 2 M 2 +Mb-C = 0 (mod p) (30) M 2 +Mb-C = 0 (mod q) (31) Rabin RSA 2 n RSA Rabin 31

RSA RSA Rabin n n c,n x 2 = c mod n (32) x x y c = y 2 mod n c x 2 = y 2 mod n (33) x 1/2 x y x-y n p q y 2 c (= y 2 mod n) x y x x-y n Rabin Rabin M C M M ID 32

Rabin (30)(31) M 1/4 (3) Rabin MI Rabin Rabin Williams[1980] p,q Williams Rabin [1987] Williams Williams Rabin MI Matsumoto and Imai[1983,1988] [1982,1984,1985] obscure 1 Matsumoto-Imai[1983] Delsarte et al.[1985] 1988 Matsumoto-Imai[1988] 33

7 2 DLP ElGamal EDLP DL OAEP optimal asymmetric encryption padding (1)ElGamal ElGamal[1984] Diffie-Hellman DLP DLP FP ElGamal A B M [ ] B p x R Z* p p y = x mod p x (y, p, ) [ ] A k B y C 1,C 2 C 1 = k mod p (34) C 2 = My k mod p (35) [ ] B x M MC 1 xb = C 2 mod p (36) ElGamal DLP DLP (C 1,C 2 ) 7 Patarin[1995] 34

C 1 k C 2 y k C 1 k DLP DLP bit bit DLP Blum and Micali [1982] k k k (M a,m b ) (C a,c b ) M b C b = (37) M a C a M a C a C b M b ElGamal Zheng and Matsumoto[1996] k (C 1,C 2 ) C 2 M = mod n y k (2)EDLP DL 1985 F 8 EDLP DL Koblitz[1987], Miller[1986] DLP EDLP 8 3 35

EDLP EDLP 9 Certicom Next Siemens Thompson EDLP DL F q F q DL r r r r DLP EDLP DL ElGamal EDLP ECElG ECElG ElGamal A B m M m E(F q ) P E(F q ) [ ] B x R Z* p E Y =xp x E(F q ),P,Y [ ] A r E C 1 = rp (38) C 2 = M+rY (39) (C 1, C 2 ) B [ ] B x E C 2 -xc 1 = M (40) 9 EDLP 36

M m m 0 m l E(F q ) M 10 ECElG EDLP DL EDLP DLP EDLP DLP MOV Menezes-Okamoto-Vanstone[1991] EDLP E(F q ) EDLP Pohlig-Hellman T(q) T(q) = O ((#E(F q )) 1/2 ) ECElG 10 m E(F q ) M k 0 kl q 1 i k i x m,i =mk+i p r-1 x m,i i =0 a i p i (0 a i p-1) a i x m,i F q F p r-1 r-1 i =0 a i X i F q x m,i f(x m,i ) F q i x m,i =x m, x m m E(F q ) M = (x m, f(x m ) 0.5 ) 1 i k i f(x m )(x m =mk+i) 1/2 m E(F q ) (1/2) k E(F q ) M x x m x m x m -1 m = k m 37

ECElG DH Sakurai and Shizuya[1995] ECElG ElGamal ElGamal 2 1 Zhen and Matsumoto[1996] (3)OAEP I 3.(1) Bellare and Rogaway[1995] OAEP optimal asymmetric encryption padding Goldwasser-Micali[1984] Goldwasser-Micali Goldwasser-Micali Blum, Feldman, and Micali[1988] noninteractive zero-knowledge proof NIZK 11 Naor-Yung[1990] NIZK Naor-Yung Damgard[1992] Zhen and 11 zero-knowledge interactive proof ZKIP 38

Seberry[1993] Dolev, Dwork, and Naor[1991] Bellare and Rogaway[1993] OAEP Bellare and Rogaway[1995] RSA OAEP SET 12 OAEP m {0,1} n f(m0 k1 ) G(r) r H(m0 k1 G(r)) f G H r bit 0 k1 Bellare and Rogaway[1995] OAEP f RSA G H SHA Secure Hash Algorithm 13 SHA OAEP (4) McEliece 12 SET(Secure Electronic Transactions) VISA Mastercard SET de facto standard 13 SHA NSA National Security Agency MD 39

Merkle-Hellman[1978] Merkle-Hellman Merkle-Hellman Merkle-Hellman Merkle[1978] Graham- Shamir Graham-Shamir Shamir[1980] Chor-Rivest Chor-Rivest[1984] Shamir[1978] Shamir n c n a = (a 1,a 2,,a n ) c = a t m = a i m i (41) i 2 m = (m 1,m 2,,m n ) M n NP NP NP 14 Merkle-Hellman a i a 1 + +a i-1 (i=2,,n) 15 14 n P n NP NP NP NP NP NP 15 n 40

Shamir[1982] n Graham-Shamir Lagarias and Odlyzko Lagarias[1984] Brickell [1983] LLL 16 Merkle-Hellman Adleman[1982] Brickell[1982] Shamir Odlyzko[1984] LLL Chor-Rivest Schnorr and Hörner[1995] McEliece McEliece[1978] Goppa NP McEliece McEliece GF(2) 1 McEliece RSA 2 19 bit 500,000bit 2 Norzhik and Turkin[1991] McEliece 16 Merkle-Hellman Shamir[1982] Lenstra[1981] Merkle-Hellman LLL Lovasz Lenstra 41

3 DLP ElGamal Schnorr DSA FP ESIGN ZKIP Fiat-Shamir EDLP Ong-Schnorr-Shamir NIZK Bellare-Goldwasse I 3.(2) FP DLP OAEP RSA ESIGN RSA ESIGN Bellare and Rogaway[1996] FP DLP Schnorr Fiat-Shamir ElGamal Pointcheval and Stern[1996] correlation-free one-way hash function FP DLP Fiat-Shamir Okamoto[1993] (1)ElGamal ElGamal ElGamal[1984] DLP DLP FP ElGamal RSA 2 ElGamal Schnorr DSA ElGamal RSA RSA 42

ElGamal p 17 FP DLP RSA ElGamal A B M [ ] A p x R Z* p y = x mod p p x y, p, [ ] A k r r = k mod p (42) A x r, k t M-xr t = mod p-1 (43) k A B M S = (r, t) [ ] B A y M = y r r t mod p (44) ElGamal DLP y, p, y = x mod p x ElGamal (y, p, ) x ElGamal DLP DLP 10 FP FP 17 Fermat p-1 p x 43

RSA ElGamal DLP Schirokauer[1993] Adleman[1994] T(q) T(q) = exp((1.922+o(1))(log q) 1/3 (loglog q) 2/3 ) ElGamal DLP ElGamal A x A M r t M t r S = (r, t) M M S = (r, t) t = log r M y -r mod p r y r r t = M mod p (45) M = log y r r t mod p r = i y j mod p (46) t = -rj -1 mod p-1 (47) M = -r i j -1 mod p-1 (48) 0 i p-2, 0 j p-2, GCD(j, p-1)=1 M ElGamal DLP 44

ElGamal ElGamal k p, k ElGamal k k k k M, S = (r, t) x M - k t x = mod p-1 (49) r x k (M 1, r, t 1 ), (M 2, r, t 2 ) y r r t1 = M1 mod p (50) y r r t2 = M2 mod p (51) k k(t 1 - t 2 ) = M 1 -M 2 mod p-1 (52) k x p, p, Bleichenbacher[1996] ElGamal p -1 = nq n b t = (mod p) b = lq 0 l n 45

t M (r, t) M F p * r = b, s = tm (mod q) M y r r -s t = M - t M /t = 1 (r, s) M F p b F p b F p p-1 q p-1 = qn b q b = lq (l {1,,n-1}) 1 t q-1 = b t (mod p) n b ElGamal F p r p-1 q r q ElGamal DSA r = b DSA Zheng and Matsumoto[1996] k M S = (r, t) M-kt x = mod p-1 r 46

(2)ESIGN ESIGN NTT Okamoto[1990] 18 FP ESIGN Okamoto et al.[1993] A M B [ ] A p,q p q n = p 2 q, k 3 (p, q) (k, n) [ ] A Z pq * x h(m)-(x k mod n) w = (53) pq w = mod p (54) kx k-1 s = x+ypq (55) A B M s [ ] B A k h(m) s k mod n h(m)+2n 2/3 (56) ESIGN 18 Okamoto[1986,1987] ESIGN Shamir Vallée et al.[1988] 47

ESIGN RSA n p 2 q s p,q p,q {s j j=1,,j} {t j t j = (s k mod n)-h(m), j=1,,j} p,q s x p,q x s n = p 2 q (57) k h(m)-( x j mod n) w j = (j=1,,j) (58) pq w j y j = mod p (j=1,,j) (59) kx j k-1 s j = x j +y j pq (j=1,,j) (60) (3J+2) (3J+1) {x j } Z pq * {s j } Z n * {s j } p,q {t j } Z pq {t j } pq {t j } 10 10 {t j } pq 10 10 {t j } ESIGN FP RSA RSA n 48

ESIGN n=p 2 q n q q s exp(-(log n)/3) s k = h(m) mod n (61) RSA ESIGN k 4 ESIGN Okamoto and Shiraishi[1985] k 2 Brickell and delaurentis[1986] k=3 k=2 Shamir ESIGN k,p,q,n k: 8,16,32,4,128,256,512,1024 p,q: 192 bits n: 576 bits 49

Shamir k=3 Brickell and delaurentis[1986] k 4 ESIGN k=2 Shamir h(m) h(m) s 2 mod n h(m)+2n 2/3 s r x 2rx-h(M)+r 2 mod n 2n 2/3 (1 x n 1/3 ) (62) x n 2/3 h(m) mod n [0, n] r x s = r+x k=3 Brickell and delaurentis r = [n/3](i.e., r = n/3+a for a 1/2) r z = h(m)-r 3 mod n z 1/3 3 x (i.e., x = z 1/3 +b for b 1/2) s = r+x h(m) s 3 = r 3 +3r 2 x+3rx 2 +x 3 mod n = r 3 +3(n/3+a) 2 x+3(n/3+a)x 2 +z+3z 2/3 b+3z 1/3 b 2 +b 3 mod n = h(m)+3a 2 x+3ax 2 +3z 2/3 b+3z 1/3 b 2 +b 3 mod n = h(m) mod n 2n 2/3 (63) n/3 k 4 ESIGN Brickell and delaurentis[1986] ([N 1/k ]) k -N = O(N k-1/k )O(N 2/3 ) (64) k 4 (Vallee et al.[1988a,1988b], Girault et al.[1989]) k 4 50

M 1,M 2,,M t s 1,s 2,,s t k s i = h(m i ) mod n (i=1,,t) (65) n RSA n 10 M 0 {s i i=1,,t} m 0 s k mod n m 0 +2n 2/3 s k s i mod n = m i ( m i = h(m i ), i=1,,t) RSA m 0,m 1,,m t k m i s i mod n m i +2n 2/3 m 0,m 1,,m t (3)DSA ElGamal 2 Schnorr[1989] ElGamal DLP p p-1 q ElGamal 2 p 2 q Schnorr q DLP p DSA Schnorr ElGamal NIST 19 [1992] 1994 19 NIST National Institute of Standards and Technology 1987 Computer Security Act FIPS 1980 Executive Order 51

ElGamal Schnorr DSA RSA Hoster et al.[1995] Miyaji[1996] DSA Miyaji[1996] A M B [ ] A p, p- 1 q x R Z q y = g x mod p g q x y, g, p, q [ ] A k R Z q r r = (g k mod p) mod q (66) A x r, k t h(m)+xr t = mod q (67) k A B M S = (r, t) [ ] B A y r = (g h(m)/t y r/t mod p) mod q (68) DSA DSA y g g q y = g x mod p (69) 12333 NSA National Security Agency 52

p Gordon q Pohlig-Hellman III 2. DSA M r t M t r S = (r, t) M M S = (r, t) t, z qz+r = (g h(m) y r ) 1/t mod p (70) p DLP r, z (qz+r) t y -r = g h(m) mod p (71) r r t y -r = g h(m) mod p (72) M, z (qz+r) t y -r = g h(m) mod p (73) p DLP M,r,t r = (g h(m) y r ) 1/t mod p (74) M Vaudenay[1996] 53

ElGmal k k k ElGamal Bleichenbacher[1996] (4)Fiat-Shamir Fiat-Shamir Fiat-Shamir[1986] challenge and response Fiat-Shamir Fiat-Shamir[1986] Fiat-Shamir RSA 100 [ ] A p q n=pq k Z k-bit h s Z n v=s 2 mod n n, f s [ ] A k h=(e 1 e k )=f(m,x 1,,x k ) A y i =r i s ei mod n 1 =(x 1,,x k ) 2 =(y 1,,y k ) ( 1,h, 2 ) m [ ] B m ( 1,h, 2 ) h = f(m, 1 ) (75) y i = r i s ei mod n for i (76) Fiat-Shamir 54

correlation-free one-way hash function Okamoto[1993] (5)EDLP EDLP ECElG ECSS ECDSA ECSS IEEE 20 Institute of Electrical and Electronic Engineers ECDSA IEEE ANSI 21 (American National Standards Institute) DLP ECElG ElGamal ECSS Schnorr ECDSA DSA EDLP DLP FP DLP ECSS ECDSA EDLP DLP EDLP DLP MOV Menezes-Okamoto- Vanstone[1991] EDLP E(Fq) EDLP Pohlig-Hellman T(q) T(q) = O((#E(Fq)) 1/2 ) 20 IEEE ANSI IEEE IEEE 21 ANSI 1918 ANSI ISO 55

ECElG ECDSA #E(Fq) q Miyaji[1996] ElGamal DSA k k k (6) Ong-Schnorr- Shamir Bellare-Goldwasser Ong-Schnorr-Shamir Ong et al.[1984] Ong-Schnorr-Shamir Ong and Schnorr[1984] n 2 2 x 2 +ky 2 = m mod n (77) Pollard Ong et al. 2 3 4 Pollard[1987] Estes et al.[1986] Ong-Schnorr-Shamir 56

Ong et al. 4 Bellare-Goldwasser Bellare and Goldwasser[1990] NIZK 22 R NIZK NIZK R Bellare-Goldwasser Feige and Shamir [1990] Dwork and Naor [1994] RSA 2 5 RSA 22 Naor and Yung[1989] Rompel[1990] 57

III FP DLP EDLP RSA Rabin Rabin Williams ESIGN Fiat-Shamir FP ElGamal DSA Schnorr DLP DL ECElG ECDSA ECSS EDLP 1 FP RSA Rabin Rabin Williams ESIGN Fiat-Shamir FP (1) n p O(p) p n z n z p=gcd(n,z) n p m, n min(m, n) 5 Lamé Euclid 1 z n p n 58

O(p 1/2 ) Pollard[1975] p-1 p-1 Pollard[1974] p+1 p 1 Guy[1975] p-q Fermat Brillhart[1981] p-1 Lenstra[1987] Montgomery[1987] 2 2 s 2 = t 2 mod n s t z=s±t GCD(n, z) Morrison-Brillhart[1975] Schroeppel[1977] 2 Pomerance[1983] Silverman[1987] Lenstra et al.[1990] L p [a, b]=exp((b+o(1))(log p) a (loglog p) 1-a ) (78) o(1) 0 (2) p-1 p+1 Fermat 2 p p-1 p 1 Pollard[1974] n p p-1 p-1 n p p-1 M p-1 = p i ei, p i M (79) p-1 M -smooth p n a GCD(a, n) = 1 GCD(a, p) = 1 Fermat 1 a p-1 = 1 mod p (80) p-1 K a K =1 mod p p a K -1 59

n GCD(a K -1, n) p-1 K Pollard[1974] p-1 p-1 p-1 q p-1 = q p i ei, p i M, e i m i, q M (81) p i ei k a k = b b q = 1 mod p 1 GCD(b j -1, n) n j n n p p+1 p+1 = q p i ei, p i M, e i m i, q M (82) p-1 p+1 Guy[1975] Fermat Fermat Fermat's factoring method Fermat p-q Brillhart[1981] p,q p-q Fermat Fermat n = pq, p q x =(q+p)/2 y =(q-p)/2 x 2 -y 2 = n (83) (x, y) = ([n], 0) (x, y) r = x 2 -y 2 -n (84) 0 (x, y) (p, q) (x+1) 2 = x 2 +2x+1 A = 2x+1,B = 2y+1 x x+1 r r+a, A A+2 y y+1 r r-b, B B+2 Fermat 2 Pomerance[1983] 2 k 2 = l 2 mod n k l 2 quadratic sieve method 60

Pomerance[1983] 2 2 2 k 2 = l 2 mod n k l Q(x) = (x+m) 2 -n, m=[n 1/2 ] (85) x = 0, 1, 2, Q(x) Q(x) Q(x) p j Q(x) v Q(x) Q(x) d1 dr Q(x) = p 1 p r mod n (86) p 1,,p r v v-smooth Q(x) S a1 ar Q(x) = p 1 p r mod n (87) a j (j=1,,r) k = (x+ m) mod n (88) l = p j aj/2 mod n (89) k 2 = l 2 mod n GCD(k+l, n) GCD(k-l, n) n (94) Pomerance[1983] 2 T(n) T(n) = L n [1/2, 1.061] Silverman[1987] Q(x) 2 b 2-4ac = kp k 2 ax 2 +bx+c k, l 23 T plural (n) T plural (n) = L n [1/2, 1.020] 23 1977 Rivest Scientific America 129 Lenstra 1994 2 600 8 61

p-1 p-1 Z p * p-1 p-1 k Z p * a k =1 p-1 Z p * F p E(F p ) a P E(F p ) p-1 k E(F p ) k E(F p ) kp=o n E(F p ) p-1 p-1 p-1 p T(p) = L p [1/2, 1.414] n=pq p q T(n) = L n [1/2, 1.020] 2 24 n f Z n [X] Z n k m n= f(m) f=0 C K K =Q( ) O =Z[ ] K Z[ ] Z n f( ) f(m) mod n c+d O K c+d m Z smooth 24 [1987] 62

smooth B Q B O K 1 O K c+d K N(c+d ) N(c+d ) = (-d) f(-c/d) (c i, d i ) c i +d i m -smooth c i +d i -smooth c i +d i m c i +d i (c i, d i ) (c i +d i m) = s 2 (c i +d i ) = t 2 GCD(s 2 t 2, n) n 2 DLP, EDLP (1) DLP DLP G g G a H= g G g x =a x DLP 2 H= g G H H log g a H log g H G=F* q (q=p k ) G log g a index calculus method F q log g F q 63

Shanks[1972] Pohlig-Hellman[1978] Pollard[1978] Adleman[1979] Coppersmith[1984] ElGamal[1985] Coppersmith-Odlyzko-Schroeppel[1986] Gauss DLP Gordon[1992] Schirokauer[1993] Adleman[1994] F q (q=p k ) k (log p) 1/2- Schirokauer L p k[1/3,(64/9) 1/3 ] L p k[1/3,(64/9) 1/3 ] (log p) 1/2- k (log p) 2 L p k[1/2,c] Schirokauer et al.[1996] (2) EDLP DSA q Pohlig-Hellman[1978] F q Gordon[1992] Pohlig-Hellman Pohlig-Hellman[1978] H= g G n n O(log n)-smooth O(log 2 q) n = #H = # g n y-smooth k n = q i ei, q 1 q k y (90) i=1 x = log g a Z n n e1 ek Zn Zq 1 Zq k (91) log g a log g a Z n Zq i ei i 64

e-1 x = b j q j, b j Zq (92) j=1 b j (0 j e-1) Step 1: a n/q =g n/q Step 2: i =g n/q i i=0,1,... b 0 =i e 1 Step 3: a 1 = a g -b0 i n/q2 = a 1 q 2 = q 2 i b 1 =i Step 4: a 2 = a 1 g -b1q i n/q3 = a 2 q 3 = q 3 i b 2 =i b e-1 O( e i (log n+q i )) n n O(log n)-smooth O((log n) 2 ) H G n O(log n)-smooth G=H=Z* p p-1 O(log p) p-1 Pohlig-Hellman[1978] F p Q H= g G F p log g a Step 1: F p Q F p Q : g r mod p g r Step 2: v-smooth {p 1,, p n 0 p i v} Q g F p g r mod p v-smooth r g r a1 an mod p = p 1 p n F p r mod p-1 = a 1 log g p 1 + + a n log g p n n {log g p i } 65

Step 3: yg t mod p v-smooth t F p yg t mod p = p 1 b1 p n bn log g y = b 1 log g p 1 + + b n log g p n mod p - t Adleman[1979] G=H=Z* p DLP u=l p [1/2,0] Step 1 b i g bi b i g bi Step 1 Step 2 L p [1/2,c](c 0) DLP EDLP F p Q E(F p ) E(Q) E(Q) Gordon G=H=Z* p Adleman[1979] Gordon[1992] 2 Z p p p p 1 2 3 f Z p [X] x,y p 1/k y k f(x/y)=0 (mod p) O K = Z( ) 66

F p T special (p) T special (p) = L p [2/5, 1.005] F p T G (p) = L p [1/3, 3 2/3 ] = L p [1/3, 2.080] k F p k (log p) 1/2- Schirokauer[1996] T S (p k ) T S (p k k ) = L p [1/3, (64/9) 1/3 ] = L p k[1/3, 1.922] Adleman-Lenstra k F p k (log p) 2 Adleman[1994] Schirokauer (3)EDLP EDLP 1: 2: MOV E(F q ) EDLP DLP F q 1 EDLP Pohlig-Hellman[1978] Pollard[1978] Schoof[1985] 25 25 Schoof[1985] 8 3 8 Schoof 6 (Charlap-Coley-Robbins [1991] ) 67

1 1 Menezes- Vanstone[1990] Morain[1991] F 2 F p F 2 2 1991 Menezes-Okamoto-Vanstone[1991] MOV MOV-reduction EDLP DLP MOV Weil Weil pairing 6 DLP Menezes-Vanstone[1990] 2 1 2 2 Beth- Schaefer[1991] Miyaji[1993] F 2 MOV E(F q ) EDLP F q DLP p F p EDLP MOV DLP 26 26 Deuring[1941] 68

1 12 13 MOV Schoof[1995] 27 3 Koblitz[1991] Meier- Staffelbach[1993] GF(2 l ) Frobenius P (anomalous elliptic m curve) Miyaji[1994] Miyaji[1994] Koyama- Tsuruoka[1992] #E(F p )=p P P x 0 F p P P x,y #E(F p ) P m 3 FP DLP EDLP 27 Lercier and Morain[1995] 69

10 20 II FP p-1 Fermat DLP EDLP Pohlig-Hellman DLP Gordon EDLP MOV FP DLP Schirokauer Gordon EDLP Pohlig- Hellman Coppersmith Adleman-Lenstra Rivest 28 1 MIPS 29 1 1997 6 MIPS 250MIPS PC 20 200,000 250 = 800 MIPS PC Rivest 5 MIPS Rivest 20% 33% 45% 30 Type I 28 Garfinkel[1995] 29 1MIPS 30 10 MIPS Odlyzko [1995] 70

Type II Type III 3 Type I 1 Type II 10 Type III 1,000 5 4 4 FP Adleman-Lenstra L p [1/3,1.922]=exp(1.922(log p) 1/3 (loglog p) 2/3 ) DLP Schirokauer Gordon k L p [1/3,1.922]=exp(1.922(log p k ) 1/3 (loglog p k ) 2/3 ) EDLP Pohlig-Hellman exp(0.5log p) MIPS 800 MIPS MIPS 20% 33% 45% 5 Type I 1 Type II 10 Type III 1,000 71

MIPS YEAR MY 5 5 [ MY] FP & DLP EDLP 160 3.8E+10 200 4.0E+16 240 4.2E+22 280 4.4E+28 512 5.4E+05 1,024 4.0E+12 1,536 4.0E+17 2,048 4.7E+21 5 FP DLP 1,024 bit EDLP 176 bit FP DLP 2,048 bit EDLP 232 bit 31 31 FP 1,024 bit EDLP 160 bit FP 2,048 bit EDLP 224 bit 72

5 6 Type III Type II 6 5 [ ] FP & DLP EDLP 160 6.1E+04 200 6.4E+10 240 6.7E+16 280 7.1E+22 512 8.7E-01 1,024 6.5E+06 1,536 6.4E+11 2,048 7.5E+15 FP DLP 512 bit FP-512 DLP-512 Type III Type II EDLP-160 Type III 73

5 7-1 7-1 [ ] FP & DLP EDLP 10 20 10 20 160 1.1E+03 1.8E+01 200 1.1E+09 1.9E+07 240 1.2E+15 2.0E+13 280 1.2E+21 2.1E+19 512 1.5E-02 2.6E-04 1,024 1.1E+05 2.0E+03 1,536 1.1E+10 1.9E+08 2,048 1.3E+14 2.2E+18 FP-512 DLP-512 10 Type I FP-1024 DLP-1024 20 Type III EDLP-160 20 Type III EDLP-200 20 74

5 7-2 7-2 [ ] FP & DLP EDLP 10 20 10 20 160 1.6E+02 3.9E-01 200 1.6E+08 4.1E+05 240 1.7E+14 4.3E+11 280 1.8E+20 4.5E+17 512 2.2E-03 5.6E-06 1,024 1.6E+04 4.2E+01 1,536 1.6E+09 4.1E+06 2,048 1.9E+13 4.8E+10 FP-1024 DLP-1024 20 Type III EDLP-160 10 Type II EDLP-200 20 75

7-3 7-3 [ ] FP & DLP EDLP 10 20 10 20 160 6.6E+03 7.1E+02 200 6.9E+09 7.4E+08 240 7.2E+15 7.8E+14 280 7.6E+21 8.2E+20 512 9.4E-02 1.0E-02 1,024 7.0E+05 7.5E+04 1,536 6.9E+10 7.4E+09 2,048 8.0E+14 8.6E+13 20 FP DLP 1,536 bit EDLP 200 bit FP DLP 2,048 bit EDLP 240 bit EDLP 5 EDLP 76

FP DLP EDLP FP DLP EDLP 1,000 20 FP DLP 2,048 bit EDLP 240 bit EDLP FP DLP FP DLP 240 bit EDLP FP DLP DNA 77

1986 1993 1995 1995 1997 1987 RSA (D) Vol.J66-D No.8 pp. 963-969 1983 A Vol. J70-A No. 11 pp. 1632-1636 1987 11 1995 1995 3 NTT R&D Vol. 44 No. 10 1995 RSA 1997 SCIS 97-15C 1997 1990 IT82-24 1982 GF(2) IT83-47 1984 Obscure IT84-50 1985 (A) Vol. J71-A No. 7 pp. 1441-1452 1988 ElGamal 1997 SCIS 97-7B 1997 78

1997 SCIS 97-6A 1997 1167 pp. 723 1995 9 1996 SCIS 96-7C 1996 Abe, M. and E. Fujisaki, How to date blind signatures, Advances in Cryptology Proceedings of ASIACRYPT 96, Lecture Notes in Computer Science, Vol. 1163, pp. 244-251, Springer-Verlag, 1996. Adleman, L. M., A subexponential algorithm for the discrete logarithm problem with applications to cryptography, Proceedings of FOCS,,pp. 55-60, 1979. and R. L. Rivest, How to break the Lu-Lee (COMSAT) public-key cryptosystem, MIT Laboratory for Computer Sience, July 1979., C. Pomerance, and R. S. Rumely, On distinguish prime numbers from composite numbers, Ann. of Math., Vol. 117, pp.173-206, 1983. and M. A. Huang, Primarity testing and abelian varieties over finite fields, Lecture Notes in Math., Vol. 1512, Springer-Verlag, 1992., The function field sieve, Algorithmic Number Theory, Lecture Notes in Computer Science, Vol. 877, pp. 108-121, Springer-Verlag, 1994. Alex, W., B. Chor, O. Goldreich, and C. P. Schnorr, RSA/Rabin bits are 1/2+1/poly(log N) secure, Proceedings of the IEEE 25th Symposium on the Foundations of Computer Science, pp. 449-457, 1984. Anderson, R., A serious weakness of DES, November 1996. news:cmm.0.90.1.847310320.risko@chirom.cs1.sri.com Atkin, A. O. L. and F. Morain, Elliptic curves and primality proving, Math. Comp., Vol. 61, pp. 29-68, 1993. Bao, F., R. Deng, Y. Hang, A. Jeng, T. H. Nagir, and D. Narashimaharu, A new attack to RSA on tamerproof devices, October 1996, email:<9610240229.aa01599@aquarius.iss.nus.sg> Bellare, M., S. Goldwasser, New paradigms for digital signatures and message authentication based on non-interactive zero knowledge proofs, Advances in Cryptology Proceedings of CRYPTO 89, Lecture Notes in Computer Science, Vol. 435, pp. 194-211, Springer-Verlag, 1990. and P. Rogaway, Random oracles are practical: a paradigm for designing efficient protocols, Proceedings of the First Annual Conference on Computer and 79

Communications Security, ACM, 1993. and, Optimal asymmetric encryption, Advances in Cryptology Proceedings of EUROCRYPT 94, Lecture Notes in Computer Science, Vol. 950, pp. 92-111, Springer-Verlag, 1995. Bellovin, S. M. and M. Merritt, Encrypted key exchange: Password-based protocols secure against dictionary attacks, Proceedings of the 1992 IEEE Computer Society Conference on Research in Security and Privacy, pp. 72-84, 1992. Beth, T. and F. Schaefer, Nonsupersingular elliptic curves for public key cryptosystems, Advances in Cryptology Proceedings of EUROCRYPT 91, Lecture Notes in Computer Science, Vol. 547, pp. 316-327, Springer-Verlag, 1991. Blakley, B. and G. R. Blakley, Security of number theoretic public key cryptosystems against random attack (Part I), Cryptologia, Vol. 2, No. 4, pp. 305-321, 1978a. and, Security of number theoretic public key cryptosystems against random attack (Part II), Cryptologia, Vol. 3, No. 1, pp. 29-42, 1978b. and, Security of number theoretic public key cryptosystems against random attack (Part III), Cryptologia, Vol. 3, No. 2, pp. 105-118, 1979a., Rivest-Shamir-Adleman public key cryptosystems do not always conceal messages, Computers and Mathematics with Applications, Vol. 5, pp. 169-178, 1979b., Safeguarding cryptographic keys, Proceedings of the National Computer Conference, Vol. 48, pp. 242-268, American Federation of Information Processing Societies, 1979c. Blaze, M., W. Diffie, R. L. Rivest, B. Schneier, T. Shimomura, E. Thompson, and M. Wiener, Minimal key lengths for symmetric ciphers to provide adequate commercial security, A Report by an Ad Hoc Group of Cryptographers and Computer Scientists, January 1996. Bleichenbacher, D., Generating ElGamal signatures without knowing the secret key, Advances in Cryptology Proceedings of EUROCRYPT 96, Lecture Notes in Computer Science, Vol. 1070, pp. 10-18, Springer-Verlag, 1996. Blum, M. and S. Micali, How to generate cryptographically strong sequences of pseudo random bis, Proceedings of FOCS, pp. 112-117, 1982., P. Feldman, and S. Micali, Non-interactive zero-knowledge proof systems and applications, Proceedings of the 20-th Annual ACM Symposium on Theory of Comupting, pp. 103-112, 1988. Boneh, D., R. A. DeMillo, and R. J. Lipton, A new breed of crypto attack on Tamperproof tokens cracks even the strongest RSA Code, September 1996, available at 80

http://www.bellcore.vom/press/advsry96/smrtcrd.html Brands S., An efficient off-line electronic cash system based on the representation problem, Texcnical Report, CS-R9323, CWI, April 1993. Brandt, J., I. B. Damgard, P. Landrock, and, T. Pederson, Zero-knowledge authentication scheme with secret key excahnge, Advances in Cryptology Proceedings of CRYPTO 88, Lecture Notes in Computer Science, Vol. 403, pp. 583-588, Springer-Verlag, 1990. Brickell E. F. and J. DeLaurentis, An attack on a signature scheme proposed by Okamoto and Shiraishi, Advances in Cryptology Proceedings of CRYPTO 85, Lecture Notes in Computer Science, Vol. 218, pp. 28-32, Springer-Verlag, 1986. and A. M. Odlyzko, Cryptanalysis: A survey of recent results, in G. J. Simmons, ed., CONTEMPORARY CRYPTOLOGY The Science of Information Integrity, IEEE Press, 1992. Brillhart, J., D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagstaff, Jr., Factorizations of b n 1 up to high powers, Contemporary Mathematics, Vol. 22, American Mathematical Society, Providence, 1983. Charlap, L. S., R. Coley, and D. P. Robbins, Enumeration of rational points on elliptic curves over finite fields, Manuscript, 1991. Chaum, D., Blind signatures for untraceable payments, Advances in Cryptology Proceedings of Crypto 82, pp. 199-203, Plenum Press, 1983., Security without identification: transaction system to make big brother obsolete, Communications of the ACM, Vol. 28, No. 10, pp. 1030-1044, 1985., Zero-knowledge undeniable signatures, Advances in Cryptology Proceedings of EUROCRYPT 90, Lecture Notes in Computer Science, Vol. 473, pp. 458-464, Springer-Verlag, 1991a., Group signatures, Advances in Cryptology Proceedings of EUROCRYPT 91, Lecture Notes in Computer Science, Vol. 547, pp. 257-265, Springer Verlag, 1991b. Coppersmith, D. Fast evaluation of logarithms in fields of characteristic two, IEEE Transactions on Information Theory, Vol. IT-30, pp. 587-594, 1984., A.M. Odlyzko, and R. Schroeppel Discrete logarithms in GF(p), Algorithmica, Vol. 1, pp. 1-15, 1986., M. Franklin, J. Patarin, M. Reiter, Low-exponent RSA with related messages, Advances in Cryptology Proceedings of EUROCRYPT 96, Lecture Notes in Computer Science, Vol. 1070, pp. 1-9, Springer-Verlag, 81

1996. Damgard, I., Towards practical public key cryptosystems secure against chosen ciphertext attacks, Advances in Cryptology Proceedings of CRYPTO 91, Lecture Notes in Computer Science, Vol. 576, pp. 445-456, Springer-Verlag, 1991. Davida, G. I., Chosen signature cryptanalysis of the RSA(MIT) public key cryptosystem, Technology Report TR-82-2, Univ. of Wisconsin Department of Electrical Engineering and Computer Science, October 1982. DeLaurentis, J.M., A further weakness in the common modulus protocol for the RSA cryptosystem, Cryptologia, Vol. 8, No. 3, pp. 253-259, 1984. Delsarte, P., Y. Desmedt, A. Odlyzko, and P. Pret, Fast cryptanalysis of the Matsumoto-Imai public key scheme, Advances in Cryptology Proceedings of EUROCRYPT 84, Lecture Notes in Computer Science, Vol. 209, pp. 142-149, Springer-Verlag, 1985. Denning, D. E., Digital signatures with RSA and other public key protocols, Commun. ACM, Vol. 27, pp. 388-392, 1984. Deuring, M., Die typen der multiplikatorenringe elliptischer funktionenkorper, Abh. Math. Sem. Hamburg, Vol. 14, pp. 199-272, 1941. Diffie, W. and M. E. Hellman, New directions in cryptography, IEEE Transactions on Information Theory, Vol.IT-22, pp.644-654, November 1976., P. C. van Oorschot, and M. J. Wiener, Authentication and authenticated key exchanges, Designes, Codes and Cryptography, Vol.2, pp.107-125, 1992. Dwork, C. and M. Naor, An efficient existentially unforgeable signature scheme and its applications, Advances in Cryptology Proceedings of CRYPTO 94, Lecture Notes in Computer Science, Vol. 839, pp. 234-246, Springer-Verlag, 1994. ElGamal, T. E., A public key cryptosystems and a signature scheme based on discrete logarithm, Advances in Cryptology Proceedings of CRYPTO 84, Lecture Notes in Computer Science, Vol. 197, pp. 10-18, Springer-Verlag, 1985., A subexponential-time algorithm for computing discrete logarithms over GF(p 2 ), IEEE Transactions in information Theory, Vol. IT-31, pp. 473-481, 1985. Estes, D., L.M. Adleman, K. Konpella, K.S. McCurley, and G.L. Miller, Breaking the Ong- Schnorr-Shamir signature schemes for quadratic number fields, Advances in Cryptology Proceedings of CRYPTO 85, Lecture Notes in Computer Science, Vol. 218, pp. 3-13, Springer-Verlag, 1986. Feige, U. and A. Shamir, Witness indistinguishable and witness hiding protocols, 82

Proceedings of STOC, pp. 416-426, 1990. Fiat, A. and A. Shamir, How to prove yourself: practical solutions to identification and signature problems, Advances in Cryptology Proceedings of CRYPTO 86, Lecture Notes in Computer Science, Vol. 263, pp. 186-194, Springer-Verlag, 1986. Garfinkel, S., PGP: Pretty Good Privacy, O Reilly & Associates, Inc., 1995. Girault, M., Self-certified public keys, Advances in Cryptology Proceedings of EUROCRYPT 91, Lecture Notes in Computer Science, Vol. 547, pp. 490-497, Springer-Verlag, 1991. Goethals, J. M. and C. Couvreur, A cryptanalytic attack on the Lu-Lee public-key cryptosystem, Philips J. Res., Vol. 35, pp. 301-306, 1980. Goldwasser, S. and S. Micali, Probabilistic encryption, Journal of Computer and System Sciences, Vol. 28, No. 2, pp. 270-299, 1984. and J. Kilian, Almost all primes can be quickly certified, Proceedings of STOC, pp. 316-329, 1986., S., S. Micali, and R. Rivest, A digital signature scheme against adaptive chosen message attack, SIAM J. Comput., Vol. 17, No. 2, pp. 281-308, 1988. Gordon, D. M., Strong primes are easy to find, Advances in Cryptology Proceedings of EUROCRYPT 84, Lecture Notes in Computer Science, Vol. 209,pp. 216-223, Springer-Verlag, 1985., Designing and detecting trapdoors for discrete log cryptosystems, Advances in Cryptology Proceedings of CRYPTO 92, Lecture Notes in Computer Science, Vol. 740,pp. 66-75, Springer-Verlag, 1993., Discrete logarithm field in GF(p) using the number field sieve, to appear in SIAM Jounal on Discrete Math. Guy, R. K., How to factor a number, Proceedings of 5th Manitoba Conference on Numerical Mathematics, pp. 49-89, 1975. Harper, G., A. Menezes, and S. Vanstone, Public-key cryptosystem with very small key length, Advances in Cryptology Proceedings of EUROCRYPT 92, Lecture Notes in Computer Science, Vol. 658, pp. 163-173, Springer-Verlag, 1993. Hastad, J., On using RSA with low exponent in a public-key, Advances in Cryptology Proceedings of CRYPTO 85, Lecture Notes in Computer Science, Vol. 218, pp. 403-408, Springer-Verlag, 1986. Horster, P., H. Petersen, and M. Michels, Meta-ElGamal signature schemes based on the 83

discrete logarithm problem and their applications, Advances in Cryptology Proceedings of ASIACRYPT 94, Lecture Notes in Computer Science, Vol. 917, pp. 224-237, Springer-Verlag, 1995. Knuth, D., The art of computer programming, Vol. 2, (seminumerical algorithms), Addison- Wesley, 1981. Koblitz, N., Elliptic curve cryptosystems, Mathematcs of Comuptation, Vol.48, pp.203-209, 1987., Cm-curves with good cryptographic properties, Advances in Cryptology Proceedings of CRYPTO 91, Lecture Notes in Computer Science, Vol. 576, pp. 279-287, Springer-Verlag, 1992. Korzhik, V. I. and A. I. Turkin, Cryptanalysis of McEliece s public-key cryptosystem, Advances in Cryptology Proceedings of EUROCRYPT 91, Lecture Notes in Computer Science, Vol. 547, pp.68-70, Springer-Verlag, 1991. Koyama, K. and Y. Tsuruoka, Speeding up elliptic cryptosystems by using a signed bunary window method, Advances in Cryptology Proceedings of CRYPTO 92, Lecture Notes in Computer Science, Vol. 740, pp.345-357, Springer-Verlag, 1992. Lenstra, A. K., H. W. Jr. Lenstra, M.S. Manasse, and J.M. Pollard, The number field sieve, Annals of Mathematics, Vol. 126, pp. 649-673, 1987. Lenstra, H. W. Jr., Integer programming with a fixed number of variables, Univ. of Amsterdam Tech. Report, Vol. 81-03, April 1981., Factoring Integers with elliptic Curves, Annals of Mathematics, Vol. 126, pp. 649-673, 1987. Lercier, R. and F. Morain, Counting the number of point on elliptic curves over finite fields: starategies and performances, Advances in Cryptology Proceedings of EUROCRYPT 95, Lecture Notes in Computer Science, Vol. 921, pp. 79-94, Springer-Verlag, 1995. Matsumoto, T. and H. Imai, A class of asymmetric cryptosystems based on polynomials over finite rings, Proceedings of IEEE International Symposium on Information Theory, pp. 131-132, September 1983. and, On the key distribution system: A practical solution to the key distribution problem, Advances in Cryptology Proceedings of CRYPTO 87, Lecture Notes in Computer Science, Vol. 293, pp. 185-193, Springer-Verlag, 1988. and, Public quadratic polynomial-tuples for efficient signatureverification and message-encryption, 84

McEliece, R. J., A public-key cryptosystem based on algebraic coding theory, Deep Space Network Progress Report, pp. 42-44, Jet Propulsion Laboratory, 1978. Meier, W. and O. Staffelbach, Efficient multiplication on certain nonsupersingular elliptic curves, Advances in Cryptology Proceedings of CRYPTO 92, Lecture Notes in Computer Science, Vol. 740, pp. 333-344, Springer-Verlag, 1993. Menezes, A. and S. Vanstone, The implementation of elliptic curve cryptosystems, Advances in Cryptology Proceedings of AUSCRYPT 90, Lecture Notes in Computer Science, Vol. 453, pp. 2-13, Springer-Verlag, 1990., T. Okamoto, and S. Vanstone, Reducing elliptic curve logarithms to logarithms in a finite field, Proceedings of STOC, pp. 80-89, 1991. Merkle, R. C. and M. E. Hellman, Hiding information and signatures in trapdoor knapsacks, IEEE Transactions on Information Theory, Vol.IT-24, No.5, pp.525-530, September 1978. Micali, S., Fair public key cryptosystems, Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Mass.; MIT/LCS/TR-579.b; November 1993. Miller, V. S., Use of elliptic curves in cryptography, Advances in Cryptology Proceedings of CRYPTO 85, Lecture Notes in Computer Science, Vol. 218, pp. 417-426, Springer-Verlag, 1986. Miyaji, A., Elliptic curve cryptosystems immune to any reduction into the discrete logarithm problem, IEICE Transactions on Fundamentals, Vol.E76-A, No. 1, pp. 50-54, 1993., Elliptic curves suitable for cryptosystems, IEICE Transactions on Fundamentals, Vol.E77-A, No. 1, pp. 98-105, 1994., A message recovery key signature scheme equivalent to DSA over elliptic curves, Advances in Cryptology Proceedings of ASIACRYPT 96, Lecture Notes in Computer Science, Vol. 1163, pp. 1-14, Springer-Verlag, 1996. Montgomery, P. L., Speeding the Pollard and elliptic curve methods of factorization, Math., Comp., pp. 243-264, 1987. Moore, J. H., Protocol failures in cryptosystems, in G. J. Simmons, ed., CONTEMPORARY CRYPTOLOGY The Science of Information Integrity, IEEE Press, 1992. Morain, F., Building cyclic elliptic curves modulo large primes, Advances in Cryptology Proceedings of EUROCRYPT 91, Lecture Notes in Computer Science, Vol. 547, pp. 328-336, Springer-Verlag, 1991. Naor, M. and M. Yung, Universal one-way hash functions and their chosen ciphertext 85

attacks, Proceedings of STOC, pp. 33-43, 1989. and, Public-key cryptosystems provably secure against chosen ciphertext attacks, Proceedings of STOC, pp. 427-437, 1990. National Institute for Standards and Technology, Specifications for a digital signature standard, Federal Information Processing Standard Publication 186, 1991., The digital signature standard, Com. of the ACM, Vol.35, No.7, pp.36-40, 1992. Odlyzko, M., The future of integer factorization, Proceedings of Multimedia and Information Security, JAIST, pp. 139-151, 1995. Ohta, K. and T. Okamoto, A modification of the Fiat-Shamir scheme, Advances in Cryptology Proceedings of CRYPTO 88, Lecture Notes in Computer Science, Vol. 403, pp. 232-243, Springer-Verlag, 1993. Okamoto, E. and K. Tanaka, Keu distribution based in identification information, Electronics Letters, Vol.7, No.4, pp. 481-485, May 1989. Okamoto, T. and A. Shiraishi, A fast signature scheme based on quadratic inequalities, Proceedings of the 1985 Symposium on Security and Privacy, IEEE, pp. 123-132, April 1985., Fast public-key cryptosystems using congruent polynomial equations, Electronics Letters, Vol. 22, No. 11, pp. 581-582, 1986., A fast signature scheme based on congruential polynomial operations, IEEE Transactions on Information Theory, Vol. 36, No. 1, pp. 47-53, 1990. and K. Ohta, Divertible zero-knowledge interactive proofs and commutative random self-reducibility, Advances in Cryptology Proceedings of EUROCRYPT 89, Lecture Notes in Computer Science, Vol. 434, pp. 134-149, Springer-Verlag, 1990., Provably secure and practical identification schemes and corresponding signature schemes, Advances in Cryptology Proceedings of CRYPTO 92, Lecture Notes in Computer Science, Vol. 547, pp. 31-53, Springer-Verlag, 1993., A. Fujioka, and E. Fujisaki, An efficient digital siganture scheme based on an elliptic curve over the Ring Zn, Advances in Cryptology Proceedings of CRYPTO 92, Lecture Notes in Computer Science, Vol. 547, pp. 54-65, Springer-Verlag, 1993. and K. Ohta, Survey of digital signatures, Proceedings of the Third Symposium on: State and Progress of Research in Cryptography, pp. 17-29, Fondazone Ugo Bordoni, 1993. Ong, H. and C.P. Schnorr, Signatures through approximate representations by quadratic forms, Advances in Cryptology Proceedings of Crypto 83, Plenum 86

Press, 1984.,, and A. Shamir, An efficient signature scheme based on polynomial equations, Proceedings of the 16th Annual Symposium on the Theory Computing, pp. 208-216, 1984. Phitzmann, M. and M. Waidner, Formal aspects of fail-stop signature, Fakultät für Informatic, University Karlsruhe, Deutschland, Report 22/29, 1990. Pohlig, S. and M. Hellman, An improved algorithm for computing logarithms over GF(p) and its cryptographic significance, IEEE Transactions on Information Theory, Vol. 24, pp. 106-110, 1978. Pointcheval, D. and J. Stern, Security proofs for signature schemes, Advances in Cryptology Proceedings of EUROCRYPT 96, Lecture Notes in Computer Science, Vol. 1070, pp. 387-398, Springer-Verlag, 1996. Pollard, J.M., Theorems on factorization and primality testing, Proceedings of Camb. Philos. Soc., Vol. 76, pp. 521-528, 1974., A Monte Carlo method for factorization, BIT, Vol. 15, pp. 331-334, 1975. and C. P. Schnorr, An efficient solution of the congruence x 2 +ky 2 =m (mod n), IEEE Transactions on Information Theory, Vol. IT-33, No.5, pp. 702-709, September 1987. Pomerance, C., The quadratic sieve algorithm, Lecture Notes in Computer Science, Vol. 209, pp. 169-182, 1985. Rabin, M. O., Probabilistic algorithms, Algorithms and complexity-new directions and recent results, Academic Press, 1976., Digitalized signatures and public-key functions as intractable as factorization, M.I.T. Laboratory for Computer Science, Technical Report MIT/LCS/TR-212, 1979. Rivest, R. L., A. Shamir, and L. Adleman, A metohd of obtaining digital signatures and public key cryptosystems, Communications of the ACM, Vol. 21, No. 2, pp.120-126, 1978a., Remarks on a proposed cryptanalytic attack on the MIT public-key cryptosystem, Cyrptologia, pp.62-65, 1978b. Rompel, J., One-way functions are sufficient for secure signatures, Proceedings of STOC, pp. 387-394, 1990. Sakurai, K. and H. Shzuya, Relationships among the computational powers of breaking discrete log systems, Advances in Cryptology Proceedings of EUROCRYPT 95, Lecture Notes in Computer Science, Vol. 921, pp. 341-355, Springer-Verlag, 1995. 87

Schneier, B., APPLIED CRYPTOGRAPHY, John Wiley & Sons, Inc., 1993. Schirokauer, O., D. Weber, and T. Denny, Discrete Logarithms: The Effectiveness of the Index Calculus Method, Algorithmic Number Theory, Lecture Notes in Computer Science Vol. 1122, Springer-Verlag, pp. 335-361, 1996. Schnorr, C. P., Efficient signature generation for smart cards, Advances in Cryptology Proceedings of CRYPTO 89, Lecture Notes in Computer Science, Vol. 435, pp. 239-252, Springer-Verlag, 1990. and H. H. Hörner, Attacking the Chor-Rivest cryptosystem by improved lattice reduction, Advances in Cryptology Proceedings of EUROCRYPTO 95, Lecture Notes in Computer Science, Vol. 921, pp. 1-12, Springer-Verlag, 1995. Schoof, R., Elliptic curves over finite fields and the computation of square roots mod p, Mathematics of Computation, Vol. 44, pp. 483-494, 1985. Shamir, A. and R. E. Zippel, On the security of the Merkle-Hellman cryptographic scheme, IEEE Transactions on Information Theory, Vol. IT-26, No.3, pp.339-340, May 1980., Identity-based cryptosystems and signature schemes, Advances in Cryptology Proceedings of CRYPTO 84, Lecture Notes in Computer Science, Vol. 196, pp. 47-53, Springer-Verlag, 1985. Shanks, D., Class number, a theory of factorization, and Genera, Proceedings of Syposium Pure Mathematics, AMS, 1972. Silverman, R. D., The multiple polynomial quadratic sieve, Math, Comp., Vol. 48, pp. 243-264, 1987. Simmons, G. J. and M. J. Norris, Preliminary comments on the MIT public-key cryptosystem, Cryptologia, Vol.,No., pp.406-414, October 1977., A weak privacy protocol using the RSA crypto algorithm, Cryptologia, Vol.7,No.2, pp.180-182, April 1983. Stinson, D. R., CRYPTOGRAPHY Theory and Practice, CRC Press, 1995. 1996 Solovay, R. and V. Strassen, A fast Mote-Carlo test for primarity, SIAM J. Comp., Vol. 6, pp. 84-85, 1977. Vallée, B., M. Girault, and P. Toffin, How to break Okamoto s cryptosystem by reducing lattice values, Advances in Cryptology Proceedings of EUROCRYPT 88, Lecture Notes in Computer Science, Vol., pp. 83-88, Springer-Verlag, 1996. van Oorschot, P.C., A comparison of practical public key cryptosystems based on integer 88

factorization and discrete logarithms, in G.J. Simmons, ed., CONTEMPORARY CRYPTOLOGY The Science of Information Integrity, IEEE Press, 1992. Vaudenay, S., Hidden collisions on DSS, Advances in Cryptology Proceedings of CRYPTO 96, Lecture Notes in Computer Science, Vol. 1109, pp. 281-291, Springer-Verlag, 1988. Von zur Gathen, J., D. Kozen, and S. Landau, Functional decomposition of polynomials, Proceedings of the 28th IEEE Symposium on the Foundations of Computer Science, pp. 127-131, IEEE Press, 1987. Williams, H. C. and B.K. Schmid, Some remarks concerning the MIT public-key cryptosystem, BIT, 19, pp. 525-538, 1979., A modification of the RSA public-key encryption procedure, IEEE Transactions on Information theory, Vol. IT-26, pp. 726-729, 1980., Some public-key crypto-functions as intractable as factorization, Advances in Cryptology Proceedings of CRYPTO 84, Lecture Notes in Computer Science, Vol. 196, pp. 66-70, Springer-Verlag, 1985. Wiener, M.J., Cryptanalysis of short RSA secret exponents, IEEE Transactions on Information theory, Vol. IT-36, No. 3, pp. 553-558, 1990. Zheng, Y. and J. Seberry, Practical approaches to attaining security against adaptively chosen ciphertext attacks, Advances in Cryptology Proceedings of CRYPTO 92, Lecture Notes in Computer Science, Vol. 740, pp. 292-304, Springer-Verlag, 1993. and T. Matsumoto, Breaking smart card based ElGamal signature and its variants, presented at the rump session in ASIACRYPT 96, available at http://pscitwww.fcit.monash.edu.au/ yuliang/pubs/a96-rump.ps.z 89

1 1.1 a,b b 0 a = qb+r 0 r< b q, r r b a residue r=0 a b b a a b b a a, b LCM(a, b) a, b GCD(a, b) n (a-b) a b (mod n) a b n congruent congruence = 1 p 1 p prime number 1 n Euclid Euclid Step 1: m,n n 0 :=m; n 1 :=n Step 2: n i-1 :=q i- n i + n i+1 0 n i+1 n i (1,2,...) Step 3: n i+1 =0 d:=n i i Step 2 1.2 p R p ={0, 1,, p-1} residue class R n GCD(a i, p) = 1 reduced residue class R p p (p) Euler Euler's function (p) = p-1 1.1 Euler GCD(a, q) = 1 a (q) = 1 mod q 90

Euler Fermat 1.2 Fermat GCD(a, p) = 1 p a p-1 = 1 mod p Chinese remainder theorem 1.3 m 1, m 2,,m k M=m 1 m 2 m k x = d 1 mod m 1 x = d 2 mod m 2 x = d k mod m k Z M 1.3 2 x 2 = a (mod p) a p quadratic residue a p quadratic non-residue p a p (a p) = +1-1 Legendre p (a p) = a (p-1)/2 (mod p) (a p) (ab p) = (a p)(b p) a = b (mod p) (a p) = (b p) p, q (p q)(q p) = (-1) (p-1)(q-1)/4 (-1 p) = (-1) (p-1)/2 1 (2 p) = (-1) (p+1)(p-1)/8 2 91

2 G G a,b G a b G G (G, ) 2.1 (G, ) (G, ) group a,b,c G (a b) c = a (b c) e G a G e a = a e = a e a G a b = b a = e b b a G 2 a,b a b = b a G Abelian group + additive group multiplicative group 1 a a -1 infinite group finite group G G order G S S G subgroup 2.2 2 +, (R,+, ) ring (R,+) (R {0}, ) x,y,z G x (y+z) = x y+x z (y+z) x = y x+z x Abelian ring +, Z Q R C n Z n Z,Q,R,C 2.3 R a 0 a b = 0 b 0 R 92

a zero divisor 2.4 R integral domain Z,Q,R,C Z n n n 2.5 R a 0 a b = 1 b R a 2.6 (F,+, ) field (F,+, ) x (F {0}, ) (x 0) x -1 Q,R,C Z 1 p Z p F (F,+, ) (F,+, ) finite field Galois Galois field F q(=p n ) q(=p n ) F,G F G q(=p n ) GF(q) F q 93

3 3.1 3 i.e., f(x,y) 3 f(x,y)=0 ( f / x=0 f / y=0) elliptic curve 3.2 p p 3 F q (q = p r ) {(x,y) y 2 = x 3 +ax+b (mod q) } (a, b F q ) 4a 3 +27b 2 0 O F q (x, y) 3.3 F q 2 P=(x 1, y 1 ) Q=(x 2, y 2 ) P+Q=(x 3, y 3 ) (a) Q O P + Q = Q + P = P (b) Q = -P x 2 =x 1 (mod q) y 2 =-y 1 (mod q) P + Q = Q + P = O (c) Q -P x 3 = {(y 2 - y 1 )/(x 2 - x 1 )} 2 -x 1 -x 2 (mod q) y 3 = {(y 2 - y 1 )(x 1 - x 3 )}/(x 2 - x 1 )- y 1 (mod q) (d) Q =P x 3 = {(3x 2 1 +a)/(2y 1 )} 2-2x 1 (mod q) y 3 = {(3x 2 1 +a)(x 1 - x 3 )}/2y 1 - y 1 (mod q) mod q P Q 2 x F q E(F q ) E(F q ) # E(F q ) Hasse 3.1 Hasse E(F q ) # E(F q ) 94

q-2q 1/2 +1 # E(F q ) q+2q 1/2 +1 E(F q ) n 1,n 2 (n 1 n 2 ) E(F q ) (n 1,n 2 ) n 2 n 1 q-1 E(F q ) # E(F q )= n 1 n 2 E(F q ) n 1 95