katagaitai workshop winter

Size: px
Start display at page:

Download "katagaitai workshop winter"

Transcription

1 katagaitai workshop 2018 winter 0CTF Finals: Authentication & Secrecy Shiho Midorikawa Shiho Midorikawa katagaitai workshop winter March 18, / 142

2 Introduction Introduction Shiho Midorikawa katagaitai workshop winter March 18, / 142

3 Introduction Who (Shiho Midorikawa) Cybozu Labs, Inc. CTF, Math, Crypto,... CTF scryptos, binja, vuls, fuzzi3 Shiho Midorikawa katagaitai workshop winter March 18, / 142

4 Introduction. Medium Hard Hard Shiho Midorikawa katagaitai workshop winter March 18, / 142

5 Introduction : Howgrave-Graham s Lemma LLL, Shiho Midorikawa katagaitai workshop winter March 18, / 142

6 Introduction : Authentication & Secrecy (0CTF 2017 Finals) Dual RSA Workshop Shiho Midorikawa katagaitai workshop winter March 18, / 142

7 NRI.. Shiho Midorikawa katagaitai workshop winter March 18, / 142

8 Shiho Midorikawa katagaitai workshop winter March 18, / 142

9 RSA RSA [RSA78] Definition 1 (RSA / ) p, q n = pq, ϕ(n) = (p 1)(q 1) e d = e 1 mod ϕ(n)., (e, n) RSA, d RSA. Definition 2 (RSA ) RSA (e, n) m Z/nZ c c = m e mod n. Definition 3 (RSA ) RSA (e, n) RSA d, c m m = c d mod n. Shiho Midorikawa katagaitai workshop winter March 18, / 142

10 RSA - m = c d mod n, m m ed m m kϕ(n) m 1 m (mod n). where k Z -, Euler s Thm.(gcd(a, n) = 1 a a ϕ(n) 1 (mod n)). Shiho Midorikawa katagaitai workshop winter March 18, / 142

11 RSA RSA [Bon99]. Alexander May [Ale07], May [May03],. [KO08]... Shiho Midorikawa katagaitai workshop winter March 18, / 142

12 RSA M? Shiho Midorikawa katagaitai workshop winter March 18, / 142

13 RSA 1: Stereotyped-Message Attack c m, m C x0 m = C + x 0,. (C + x 0 ) e c 0 (mod N), x 0. Shiho Midorikawa katagaitai workshop winter March 18, / 142

14 RSA 2: Boneh-Durfee s Attack RSA e, d. k. ed = 1 + k(p 1)(q 1) (, / ). ed = 1 + k(p 1)(q 1) = 1 + k(pq + 1 (p + q)) x = k, y = (p + q), A = N + 1, e x(a + y) (mod e). mod e d. Shiho Midorikawa katagaitai workshop winter March 18, / 142

15 RSA, x, y., RSA. [BD99], ROCA[NSS + 17],. Shiho Midorikawa katagaitai workshop winter March 18, / 142

16 Shiho Midorikawa katagaitai workshop winter March 18, / 142

17 ,,. Shiho Midorikawa katagaitai workshop winter March 18, / 142

18 1996 Don Coppersmith EUROCRYPT Low-Exponent RSA with Related Messages [CFPR96] Finding a Small Root of a Univariate Modular Equation [Cop96b] Finding a Small Root of a Bivariate Integer Equation; Factoring with High Bits Known [Cop96a] [Cop96b]., 1997 Nicholas Howgrave-Graham [HG97]. Shiho Midorikawa katagaitai workshop winter March 18, / 142

19 [HG97] ( ).,. Shiho Midorikawa katagaitai workshop winter March 18, / 142

20 Theorem 4 (Coppersmith, [HG97]) N, f(x) a 1 δ., f(x 0 ) 0 (mod N) x 0 : x 0 N 1 δ. a 1 [HG97],. Howgrave-Graham s Lemma,. Shiho Midorikawa katagaitai workshop winter March 18, / 142

21 Theorem 5 (Coppersmith, [HG01]) N, 0 < β 1, f(x) 1 1., b N β, b N f(x 0 ) 0 (mod b), x 0 : x 0 N β2. [HG01] Thm. 4. b, N = k b (k N). Shiho Midorikawa katagaitai workshop winter March 18, / 142

22 Theorem 6 (Coppersmith, [May03]) N, 0 < β 1, f(x) 1 δ., b N β, b N f(x 0 ) 0 (mod b), x 0 log N, δ : x 0 N β2 δ. Shiho Midorikawa katagaitai workshop winter March 18, / 142

23 ,., M, b < N β M. β δ [Cop96b], [HG97] 1 f(x) 0 (mod M) [HG01] 1 f(x) 0 (mod b) [May03] f(x) 0 (mod b) May., Sagemath small_roots Pari/GP zncoppersmith May., (1 Modular ) May [May03]. Shiho Midorikawa katagaitai workshop winter March 18, / 142

24 . Thm. 6 Thm. 4, Thm Shiho Midorikawa katagaitai workshop winter March 18, / 142

25 ,,,.,.,. Shiho Midorikawa katagaitai workshop winter March 18, / 142

26 , Modular Modular. Berlekamp,., Modular. Shiho Midorikawa katagaitai workshop winter March 18, / 142

27 O x y ( 2, 0) ( 2, 0) ( 5, 3) ( 5, 3) (2 2, 6) ( 2 2, 6), 2 y = x 2 2, mod 3,. Shiho Midorikawa katagaitai workshop winter March 18, / 142

28 :,.., Modular x 0 M x 0 < M, Modular 0 x < 3. Shiho Midorikawa katagaitai workshop winter March 18, / 142

29 O x y ( 2, 0) ( 2, 0) ( 5, 3) ( 5, 3) (2 2, 6) ( 2 2, 6) 0 x < 3, 6. Shiho Midorikawa katagaitai workshop winter March 18, / 142

30 , Modular.,,., Modular? Shiho Midorikawa katagaitai workshop winter March 18, / 142

31 .,., x 0 Modular f(x) 0 (mod M), k Z, f(x 0 ) km = 0. k = Shiho Midorikawa katagaitai workshop winter March 18, / 142

32 f(x 0 ) = 0 M = 0. f(x) = 0. f(x0 ) = 0, k = 0 f(x 0 ) 0 (mod M) Modular., Modular k = 0 f(x) = 0., f(x), k = 0. Shiho Midorikawa katagaitai workshop winter March 18, / 142

33 Howgrave-Graham s Lemma k = 0 Howgrave-Graham s Lemma. Lemma 7 (Howgrave-Graham, [HG97]) M, g(x) Z[x], ω. g(x) X, g(x 0 ) 0 (mod M) x 0 Z x 0 X., g(xx) < M ω g(x 0 ) = 0 ( ). deg g(x) deg g(x), g(x) = g i = gi 2, deg g(x) g(x). i=0 i=0 Shiho Midorikawa katagaitai workshop winter March 18, / 142

34 Howgrave-Graham s Lemma g(xx) < M ω. g(x 0 ) = deg g(x 0 ) i=0 g i x i i g i x i 0 i g i X i Shiho Midorikawa katagaitai workshop winter March 18, / 142

35 Howgrave-Graham s Lemma Cauchy-Schwarz ( i x ) ( ) iy i i x2 i i y2 i g i X i = (1 g i X i ) i i 1 ( g i X i ) 2 i=0,g i 0 g i 0 g i ω, 1 ( g i X i ) 2 = ω g(xx) < M. i=0,g i 0 i i Shiho Midorikawa katagaitai workshop winter March 18, / 142

36 Howgrave-Graham s Lemma, g(x 0 ) 0 (mod M) k Z g(x 0 ) = km. k g(xx) < M 0. g(x 0 ) = 0, g(x) = 0 x 0 ( ) Shiho Midorikawa katagaitai workshop winter March 18, / 142

37 Howgrave-Graham s Lemma Lemma 7 Modular, x 0 k = 0.,.? Shiho Midorikawa katagaitai workshop winter March 18, / 142

38 ,,.,.,. Shiho Midorikawa katagaitai workshop winter March 18, / 142

39 Proposition 8 M, f(x) 0 (mod M), g(x) 0 (mod M) x 0 Modular., a, b af(x) + bg(x) 0 (mod M) x 0. x 0 af(x 0 ) + bg(x 0 ) a 0 + b 0 0 (mod M).,. Shiho Midorikawa katagaitai workshop winter March 18, / 142

40 ,. Shiho Midorikawa katagaitai workshop winter March 18, / 142

41 f(x) 0 (mod M). mod M, M. Lemma 9 M, f(x). m, l g i,j (x) := M m i x j f i (x) (0 i m, 0 j l)., f(x 0 ) 0 (mod M) x 0 Z, g i,j (x 0 ) 0 (mod M m ). Shiho Midorikawa katagaitai workshop winter March 18, / 142

42 x0 k f(x 0 ) = km. f i (x 0 ) = k i M i. gi,j (x) g i,j (x 0 ) = M m i x j 0 f i (x 0 ) = M m i x 0 k i M i = k i x j 0 M m., gi,j (x 0 ) 0 (mod M m ) ( ). Shiho Midorikawa katagaitai workshop winter March 18, / 142

43 Lem. 9,., Lem. 7., Lem. 7..,. Shiho Midorikawa katagaitai workshop winter March 18, / 142

44 -,.,. Definition 10 ( ) n R n {b 1,..., b n }., b 1,..., b n, L(b 1,..., b n ). L(b 1,..., b n ) = { x 1 b x n b n x i Z } b 1,..., b n B = t (b 1,..., b n ). L(B) = { Bx x Z n } Shiho Midorikawa katagaitai workshop winter March 18, / 142

45 - b1,..., b n : B = t (b 1,..., b n ):. B L(B) B. L(B) : (L(B) ) L(B) : n Shiho Midorikawa katagaitai workshop winter March 18, / 142

46 -, B = ( ). O b 1 b 2 Shiho Midorikawa katagaitai workshop winter March 18, / 142

47 -, B = ( ). O b 1 b 2 Shiho Midorikawa katagaitai workshop winter March 18, / 142

48 -, B =. ( ) b 2 b 1 O. Shiho Midorikawa katagaitai workshop winter March 18, / 142

49 -, B B L(B) = L(B ). ( ). Theorem 11 ([Pei13] Lemma 2.5) B 1, B 2, B 1 = UB 2 U Z n n. a a, 1. Shiho Midorikawa katagaitai workshop winter March 18, / 142

50 - Thm. 11, B, U L(B) = L(UB). ( ) ( ) B =, B 2 1 =, 1 1 ( ) 1 0 U =. 1 1, L(B) = L(B ) det(b) = det(b ). Shiho Midorikawa katagaitai workshop winter March 18, / 142

51 - LLL 1982, Lenstra, Lenstra, and Lovász [LLL82] LLL., 1.,,. 1 Shiho Midorikawa katagaitai workshop winter March 18, / 142

52 - LLL, Thm. 12., SageMath,. sage: M = Matrix(ZZ, [[30, 25], [58, 23]]) sage: M.LLL() [ -2-27] [ 28-2] Shiho Midorikawa katagaitai workshop winter March 18, / 142

53 - LLL Theorem 12 (LLL, [LLL82]) B L, B = t (b 1, b 2,..., b n) B LLL., : b 1 b 2 b i 2 n(n 1) 4(n+1 i) det(b) 1 n+1 i., b 1 b 1 2 n 1 4 det(b) 1 n., LLL. Shiho Midorikawa katagaitai workshop winter March 18, / 142

54 -,, LLL.,., Step. Shiho Midorikawa katagaitai workshop winter March 18, / 142

55 - : m, l m, l,, Heuristic. : M, δ f(x), X f(x). : x 0 X, f(x 0 ) 0 (mod M) x 0, Shiho Midorikawa katagaitai workshop winter March 18, / 142

56 - Step 1. mod M m f(x) g i,j (x) (0 i m, 0 j l) (Lem. 9). Step 2. g i,j (x) B. Step 3. LLL B Thm. 12 B. Step 4. B 1, Howgrave-Graham s Lemma (Lem. 7). Step Step 5. B 1 h(x). Step 6. h(x) = 0,. Shiho Midorikawa katagaitai workshop winter March 18, / 142

57 - Modular. M = , f(x) = x x f(x) 0 (mod M). x = 123, X = 200, x = 123. Shiho Midorikawa katagaitai workshop winter March 18, / 142

58 - : Step 1/6 Step 1. mod M m f(x) g i,j (x) (0 i m, 0 j l) (Lem. 9)., m, l m = 2, l = 1. (m + 1)(l + 1) = 6.,. Shiho Midorikawa katagaitai workshop winter March 18, / 142

59 - : Step 1/6 g 0,0 (x) = g 0,1 (x) = x g 1,0 (x) = x x g 1,1 (x) = x x x g 2,0 (x) = x x x x g 2,1 (x) = x x x x x Shiho Midorikawa katagaitai workshop winter March 18, / 142

60 - : Step 2/6 Step 2. g i,j (x) B. Howgrave-Graham s Lemma, g i,j (x) g i,j (xx),., ax + by = s, cx + dy = t 2 ( ) ( ) ( ) a b x s = c d y t. Shiho Midorikawa katagaitai workshop winter March 18, / 142

61 - : Step 2/6 g i,j (xx). gi,j (x) k g (k) i,j., (δ + 1)(m + 1),. 1 x x 2 x 3 x 4 x 5 g 0,0 g (0) 0,0 g (1) 0,0 X g(2) 0,0 X2 g (3) 0,0 X3 g (4) 0,0 X4 g (5) 0,0 X5 g 0,1 g (0) 0,1 g (1) 0,1 X g(2) 0,1 X2 g (3) 0,1 X3 g (4) 0,1 X4 g (5) 0,1 X5 g 1,0 g (0) 1,0 g (1) 1,0 X g(2) 1,0 X2 g (3) 1,0 X3 g (4) 1,0 X4 g (5) 1,0 X5 g 1,1 g (0) 1,1 g (1) 1,1 X g(2) 1,1 X2 g (3) 1,1 X3 g (4) 1,1 X4 g (5) 1,1 X5 g 2,0 g (0) 2,0 g (1) 2,0 X g(2) 2,0 X2 g (3) 2,0 X3 g (4) 2,0 X4 g (5) 2,0 X5 g 2,1 g (0) 2,1 g (1) 2,1 X g(2) 2,1 X2 g (3) 2,1 X3 g (4) 2,1 X4 g (5) 2,1 X5 Shiho Midorikawa katagaitai workshop winter March 18, / 142

62 - : Step 2/6,., f(x) M m i x j.,.,. Shiho Midorikawa katagaitai workshop winter March 18, / 142

63 - : Step 2/6 B = M 2 M 2 X MX 2 MX 3 X 4 X 5, 0. Shiho Midorikawa katagaitai workshop winter March 18, / 142

64 - : Step 3/6 Step 3. LLL B Thm. 12 B. det(b) = M X = M 6 X 15., LLL B = t (b 1,..., b 6 ). Shiho Midorikawa katagaitai workshop winter March 18, / 142

65 - : Step 4/6 Step 4. B 1, Howgrave-Graham s Lemma (Lem. 7). Thm. 11, B, B,, U B = UB., 1 b 1 B b 1,..., b 6. Prop. 8, b 1 h(x) g i,j(x)., Thm. 12,., LLL Howgrave-Graham s Lemma.. Shiho Midorikawa katagaitai workshop winter March 18, / 142

66 - : Step 4/6 Thm. 12, 1 b 1 ( ). b (M 6 X 15 ) 1 6 (1), B 1 b 1 6, Howgrave-Graham s Lemma b 1 M 2 6 (2) b 1 ( ). Shiho Midorikawa katagaitai workshop winter March 18, / 142

67 - : Step 4/6 Thm. 12 Eq. 1 Howgrave-Graham s Lemma Eq. 2, (M 6 X 15 ) 1 6 M 2 6 (3) (M 6 X 15 ) 1 6 = M 2 6 = , Eq. 3. Shiho Midorikawa katagaitai workshop winter March 18, / 142

68 - : Step 5/6 Step 5. B 1 h(x). b 1 i xi. gi,j (xx), b 1 i Xi x i. b 1. h(x) = 6x x x x x Shiho Midorikawa katagaitai workshop winter March 18, / 142

69 - : Step 6/6 Step 6. h(x) = 0,., Howgrave-Graham s Lemma, x = 123. Thm. 12, 1, LLL. SageMath. Shiho Midorikawa katagaitai workshop winter March 18, / 142

70 - [HG97]. SageMath f28c8fdbbd01b8193aa4af6af Shiho Midorikawa katagaitai workshop winter March 18, / 142

71 -, 1 Modular, X. Thm. 4., Thm. 6. b, M. Shiho Midorikawa katagaitai workshop winter March 18, / 142

72 - Thm.6 f(x) 0 (mod b). b, M. mod b, b. Lemma 13 b, M, b M. f(x), m, l g i,j (x) := M m i x j f i (x) (0 i m, 0 j l)., f(x 0 ) 0 (mod b) x 0 Z, g i,j (x 0 ) 0 (mod b m ). Shiho Midorikawa katagaitai workshop winter March 18, / 142

73 - Thm.6 t = M b. x0 k f(x 0 ) = kb. f i (x 0 ) = k i b i. gi,j (x) g i,j (x 0 ) = M m i x j 0 f i (x 0 ) = (b t) m i x 0 k i b i = t m i k i x j 0 bm., gi,j (x 0 ) 0 (mod b m ) ( ). Shiho Midorikawa katagaitai workshop winter March 18, / 142

74 - Thm.6 Lem. 13, mod b m. LLL, Howgrave-Graham s Lemma., Thm. 6. Shiho Midorikawa katagaitai workshop winter March 18, / 142

75 - 1, 2 3, n. 2. n. Shiho Midorikawa katagaitai workshop winter March 18, / 142

76 -, Howgrave-Graham s Lemma 2. Lemma 14 (Howgrave-Graham for Bivariate Polynomial) M, g(x, y) Z[x, y], ω. g(x, y) X, Y, g(x 0, y 0 ) 0 (mod M) x 0, y 0 Z x 0 X, y 0 Y., g(xx, yy ) < M ω g(x 0, y 0 ) = 0 ( ). Shiho Midorikawa katagaitai workshop winter March 18, / 142

77 - 1., Howgrave-Graham s Lemma n. Shiho Midorikawa katagaitai workshop winter March 18, / 142

78 -,. Lemma 15 b, M, b M. f(x, y), m, l, τ g i,j,k (x, y) := M m i x j y k f i (x, y) (0 i m, 0 j l, 0 k τ)., f(x 0, y 0 ) 0 (mod b) x 0, y 0 Z, g i,j,k (x 0, y 0 ) 0 (mod b m ).,,. Shiho Midorikawa katagaitai workshop winter March 18, / 142

79 - LLL,, 2. n Heuristic [JM06],. Shiho Midorikawa katagaitai workshop winter March 18, / 142

80 - Q. 2,? A. (resultant) Gröbner. Gröbner., 2 f(x, y), g(x, y), x 0, y 0, y h = Res y (f, g) h 1, h(x 0 ) = 0. LLL 1, 2 2.,,. Shiho Midorikawa katagaitai workshop winter March 18, / 142

81 - Q. β A. β Howgrave-Graham, Eq. 3. [May03]. Shiho Midorikawa katagaitai workshop winter March 18, / 142

82 Unravelled Linearization, Thm. 12.,,,., 2009 [HM09]. Shiho Midorikawa katagaitai workshop winter March 18, / 142

83 Unravelled Linearization Boneh-Durfee s Attack.,. x(a + y) (mod e). Shiho Midorikawa katagaitai workshop winter March 18, / 142

84 Unravelled Linearization f(x, y) = xy + xa + 1 mod e m, xy. y, x i y j e m k f k (x),. X, Y X i Y j e m k (XY ) k, X, Y i, j e m X i Y j e m k (XY ) k.,. Shiho Midorikawa katagaitai workshop winter March 18, / 142

85 Unravelled Linearization,. Boneh-Durfee[BD99],.,, d < n ,,. Shiho Midorikawa katagaitai workshop winter March 18, / 142

86 Unravelled Linearization Herrmann, May [HM09] Unravelled Linearization,., u = xy + 1. xy + 1 +Ax 0 (mod e) }{{} u u+ax 0 (mod e) Shiho Midorikawa katagaitai workshop winter March 18, / 142

87 Unravelled Linearization f(u, x) = u + Ax,., g i,j,k (u, x, y) = x i y j e m k f k (u, x). u, x y. Shiho Midorikawa katagaitai workshop winter March 18, / 142

88 Unravelled Linearization,., x y., x, y (unhelpful )., xy + 1 u, x, y.,,,. Shiho Midorikawa katagaitai workshop winter March 18, / 142

89 Unravelled Linearization LLL u = xy + 1 x, y. u + LLL Unravelled Linearization., Boneh-Durfee s Attack,. [HM09], Herrmann [Her11], Boneh-Durfee s Attack [HM10]. Shiho Midorikawa katagaitai workshop winter March 18, / 142

90 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy Shiho Midorikawa katagaitai workshop winter March 18, / 142

91 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy, RSA,. alice_public_key.py bob_public.key.py communication.py keygen.sage send.bak Shiho Midorikawa katagaitai workshop winter March 18, / 142

92 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy Alice, Bob, (e, N 1, N 2 )., e., d Boneh-Durfee Small Secret Exponent Attack., keygen.sage. Shiho Midorikawa katagaitai workshop winter March 18, / 142

93 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy keygen.sage Shiho Midorikawa katagaitai workshop winter March 18, / 142

94 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy n, n d. nd n. tmp tmp = n/2 n d. Shiho Midorikawa katagaitai workshop winter March 18, / 142

95 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy, x 1, x 2 n d, tmp, p 1 = x 1 x , p1 = x 1 x n/2. Shiho Midorikawa katagaitai workshop winter March 18, / 142

96 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy, y 2 tmp, p 2 = x 1 y p2 n/2. Shiho Midorikawa katagaitai workshop winter March 18, / 142

97 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy y 1 n d, q 1 = y 1 y q1 n/2. Shiho Midorikawa katagaitai workshop winter March 18, / 142

98 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy,. x1, x 2, y 1, y 2, p 1 = x 1 x 2 + 1, p 2 = x 1 y 2 + 1, q 1 = y 1 y Shiho Midorikawa katagaitai workshop winter March 18, / 142

99 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy, p 1, q 1, p 2, n/2. n-bit RSA. N 1 = p 1 q 1, ϕ(n 1 ) = (p 1 1)(q 1 1) = x 1 x 2 y 1 y 2.. Shiho Midorikawa katagaitai workshop winter March 18, / 142

100 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy, d, q 2. d x1 x 2 y 1 y 2, ϕ(n 1 ). Shiho Midorikawa katagaitai workshop winter March 18, / 142

101 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy, e = d 1 mod (p 1 1)(q 1 1) e, ed 1 (p 1 1)(q 1 1). ed 1 (mod ϕ(n1 )), k 1, ed = 1 + k 1 ϕ(n 1 ), k 1. Shiho Midorikawa katagaitai workshop winter March 18, / 142

102 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy, q 2 = x 2 k 1 + 1, q 2. k1 d, q 2 n/2. Shiho Midorikawa katagaitai workshop winter March 18, / 142

103 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy N 2 = p 2 q 2, ϕ(n 2 ) = (p 2 1)(q 2 1) = x 1 x 2 k 1 y 2. ed = 1 + k1 (x 1 x 2 y 1 y 2 ), ed = 1 + k 1 ϕ(n 1 ) = 1 + k 1 (x 1 x 2 y 1 y 2 ) = 1 + y 1 (x 1 x 2 k 1 y 2 ) = 1 + y 1 ϕ(n 2 ), N 1, N 2 e, d RSA. Shiho Midorikawa katagaitai workshop winter March 18, / 142

104 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy,. Definition 16 p 1, q 1, p 2, q 2, N 1 = p 1 q 1, N 2 = p 2 q 2. e, d ed 1 (mod ϕ(n 1 )), ed 1 (mod ϕ(n 2 )), (e, N 1 ), (e, N 2 ) RSA, d RSA., RSA Variant. Shiho Midorikawa katagaitai workshop winter March 18, / 142

105 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy RSA Variant,, Variant. Variant Variant [Hin07]., Authentication & Secrecy Dual RSA Variant. Shiho Midorikawa katagaitai workshop winter March 18, / 142

106 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy, genkey 1 N 1, N 2, d. 1024, 342. d = , d N = max(n1, N 2 ) N , d Boneh-Durfee s Attack d < N Shiho Midorikawa katagaitai workshop winter March 18, / 142

107 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy, RSA Variant RSA.,., Variant RSA. Dual RSA, d N [PHL + 17]. 2014, Shiho Midorikawa katagaitai workshop winter March 18, / 142

108 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy Theorem 17 ([PHL + 17]) (e, N 1 ), (e, N 2 ) Dual RSA, d., d < N ϵ N 1, N 2., ϵ = ,. Shiho Midorikawa katagaitai workshop winter March 18, / 142

109 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy., N1 = p 1 q 1, N 2 = p 2 q 2 k 1, k 2 2. ed = 1 + k 1 (N 1 (p 1 + q 1 1)) ed = 1 + k 2 (N 2 (p 2 + q 2 1)), N1, d. Shiho Midorikawa katagaitai workshop winter March 18, / 142

110 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy LLL. A, ( ) A 0 M = e N 1 L(M). v = t (d, k 1 ), ( ) Ad Mv = ed k 1 N 1., t = t (Ad, ed k 1 N 1 ) L(M)., t L(M). Shiho Midorikawa katagaitai workshop winter March 18, / 142

111 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy : 2., d., a1, x 1, a 2, x 2 4 (x 1, x 2 ) d = a 1 x 1 + a 2 x 2.. x 1 = 1, x 2 = 0, a 1 = d, a 2 = 0.,., x 1, x 2. 2 [PHL + 17]. Shiho Midorikawa katagaitai workshop winter March 18, / 142

112 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy., d,. d, ( ed ) k1 N 1 = k 1 (p 1 + q 1 1) 1 0 B = e N 1. L(B) ( ) ( ) d d B = k 1 ed k 1 N 1, d. Shiho Midorikawa katagaitai workshop winter March 18, / 142

113 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy LLL,.,. (1, 0)., LLL, x 1, x 2., A (A, 0) LLL, LLL. ( ) A 0. e N 1.,, LLL decoration( ). Shiho Midorikawa katagaitai workshop winter March 18, / 142

114 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy M LLL M = ( λ1 λ 2 )., a1, a 2 Z t = a 1 λ 1 + a 2 λ 2. λ1 = (l 11, l 12 ), λ 2 = (l 21, l 22 ) Ad = a 1 l 11 + a 2 l 21. A d = a1 l 11 A + a 2 l 21 A., d. Shiho Midorikawa katagaitai workshop winter March 18, / 142

115 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy, d, N 2. ed = 1 + k2 (N 2 (p 2 + q 2 1))., l 11 = l 11 A, l 21 = l 21 A. ed = 1 + k 2 (N 2 (p 2 + q 2 1)) e(a 1 l 11 + a 2 l 21) = 1 + k 2 (N 2 (p 2 + q 2 1)) ea 1 l 11 = 1 + k 2 (N 2 (p 2 + q 2 1)) ea 2 l 21 x = k 2, y = (p 2 + q 2 1), z = a 2, el 11, x(n 2 + y) el 21z + 1 = ea 1 l 11 0 (mod el 11) Shiho Midorikawa katagaitai workshop winter March 18, / 142

116 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy 3.,., 3.,., u = xy + 1 Unravelled Linearization. f. f(u, x, z) = u + xn 2 el 21z Shiho Midorikawa katagaitai workshop winter March 18, / 142

117 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy,, LLL.. m, t 2, i, j, k, l 2 g i,j,k (u, x, y, z) = x i z j f k (u, x, z)(el 11) m k h j,k,l (u, x, y, z) = y j z k l f l (u, x, z)(el 11) m l., g i,j,k (u, x, y, z) 0 i m k, 0 j m k i, 0 k m, h j,k,l (u, x, y, z) 1 j t, m t k m, 0 l k. Shiho Midorikawa katagaitai workshop winter March 18, / 142

118 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy 3, 1.,, 3 1. Gröbner. Shiho Midorikawa katagaitai workshop winter March 18, / 142

119 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy Gröbner,. [ 08] 6.,.,,. Shiho Midorikawa katagaitai workshop winter March 18, / 142

120 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy, LLL Howgrave-Graham s Lemma, Gröbner,., Gröbner, 16. Shiho Midorikawa katagaitai workshop winter March 18, / 142

121 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy. ( ) A 0 Step 1. LLL, e N 1. Step 2. Step 1., a 1, a 2 d = a 1 l 11 + a 2l 21 l 11, l 21. Step 3. Step 2. l 11, l 21 mod (el 11 )m f(u, x, z) g i,j,k (u, x, y, z), h j,k,l (u, x, y, z). Step 4. g i,j,k (u, x, y, z), h j,k,l (u, x, y, z) B. Step 5. LLL B Thm. 12 B. Shiho Midorikawa katagaitai workshop winter March 18, / 142

122 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy Step 6. B, Howgrave-Graham s Lemma (Lem. 7). Step 7. Step 6., Unravelled Linearization u = xy + 1. Step 8. Step 7. Gröbner. Step 9. Step 8. x, y, z,.,. Shiho Midorikawa katagaitai workshop winter March 18, / 142

123 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy, N 1, N 2, e d, RSA. CTF,, 8 10., CTF.,.. Shiho Midorikawa katagaitai workshop winter March 18, / 142

124 0CTF 2017 Finals: Authentication&Secrecy 0CTF 2017 Finals: Authentication&Secrecy CTF Crypto,,.,.,. Shiho Midorikawa katagaitai workshop winter March 18, / 142

125 Workshop Workshop Shiho Midorikawa katagaitai workshop winter March 18, / 142

126 Workshop Workshop 2018/02/22 Springer.,. Shiho Midorikawa katagaitai workshop winter March 18, / 142

127 Workshop Workshop, Howgrave-Graham s Lemma 10.,... Shiho Midorikawa katagaitai workshop winter March 18, / 142

128 Workshop Workshop, Heuristic.,. <., /,,. Shiho Midorikawa katagaitai workshop winter March 18, / 142

129 Workshop Workshop Python range/xrange. n i m range(n, m+1) (i = m, m 1,..., n) range(m, n-1, -1) Shiho Midorikawa katagaitai workshop winter March 18, / 142

130 Workshop Workshop SageMath Gröbner Tips, Gröbner CPU.., Gröbner. Tips, Singular giac. Shiho Midorikawa katagaitai workshop winter March 18, / 142

131 Workshop Workshop, 20 Gröbner, AWS 128GB 20,., 1GB. 2, giac. SageMath, 2. vs = map(str, f.parent().gens()) f = PolynomialRing(QQ, vs)(f) Shiho Midorikawa katagaitai workshop winter March 18, / 142

132 Workshop Workshop,.,.,., assertion. Shiho Midorikawa katagaitai workshop winter March 18, / 142

133 Workshop Workshop URL. gh-pages/content/ctf/2017/0ctf%20finals/ cr1000-authenticationsecrecy/solve.sage,. Gröbner giac,, giac. Shiho Midorikawa katagaitai workshop winter March 18, / 142

134 Workshop Workshop.. Shiho Midorikawa katagaitai workshop winter March 18, / 142

135 Workshop I [Ale07] [BD99] [Bon99] Alexander May. Using LLL-Reduction for Solving RSA and Factorization Problems: A Survey. LLL+25 Conference in honour of the 25th birthday of the LLL algorithm, Dan Boneh and Glenn Durfee. Cryptanalysis of RSA with Private Key d Less than N 0.292, pp Springer Berlin Heidelberg, Berlin, Heidelberg, Dan Boneh. Twenty years of attacks on the rsa cryptosystem. NOTICES OF THE AMS, Vol. 46, pp , Shiho Midorikawa katagaitai workshop winter March 18, / 142

136 Workshop II [CFPR96] Don Coppersmith, Matthew K. Franklin, Jacques Patarin, and Michael K. Reiter. Low-exponent RSA with related messages. In Advances in Cryptology - EUROCRYPT 96, International Conference on the Theory and Application of Cryptographic Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding, pp. 1 9, [Cop96a] Don Coppersmith. Finding a small root of a bivariate integer equation; factoring with high bits known. In Advances in Cryptology - EUROCRYPT 96, International Conference on the Theory and Application of Cryptographic Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding, pp , Shiho Midorikawa katagaitai workshop winter March 18, / 142

137 Workshop III [Cop96b] Don Coppersmith. Finding a small root of a univariate modular equation. In Advances in Cryptology - EUROCRYPT 96, International Conference on the Theory and Application of Cryptographic Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding, pp , [Her11] [HG97] Mathias Herrmann. Lattice-based Cryptanalysis using Unravelled Linearization. PhD thesis, Nicholas Howgrave-Graham. Finding small roots of univariate modular equations revisited, pp Springer Berlin Heidelberg, Berlin, Heidelberg, Shiho Midorikawa katagaitai workshop winter March 18, / 142

138 Workshop IV [HG01] [Hin07] [HM09] Nick Howgrave-Graham. Approximate integer common divisors. In Joseph H. Silverman, editor, Cryptography and Lattices, pp , Berlin, Heidelberg, Springer Berlin Heidelberg. Hinek, M. Jason. On the Security of Some Variants of RSA. PhD thesis, Mathias Herrmann and Alexander May. Attacking power generators using unravelled linearization: When do we output too much? In Mitsuru Matsui, editor, Advances in Cryptology ASIACRYPT 2009, pp , Berlin, Heidelberg, Springer Berlin Heidelberg. Shiho Midorikawa katagaitai workshop winter March 18, / 142

139 Workshop V [HM10] [JM06] Mathias Herrmann and Alexander May. Maximizing small root bounds by linearization and applications to small secret exponent rsa. In Phong Q. Nguyen and David Pointcheval, editors, Public Key Cryptography PKC 2010, pp , Berlin, Heidelberg, Springer Berlin Heidelberg. Ellen Jochemsz and Alexander May. A strategy for finding roots of multivariate polynomials with new applications in attacking rsa variants. In Xuejia Lai and Kefei Chen, editors, Advances in Cryptology ASIACRYPT 2006, pp , Berlin, Heidelberg, Springer Berlin Heidelberg. Shiho Midorikawa katagaitai workshop winter March 18, / 142

140 Workshop VI [KO08] [LLL82] [May03] Noboru Kunihiro and Kazuo Ohta. RSA. Bulletin of the Japan Society for Industrial and Applied Mathematics, A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen, Vol. 261, No. 4, pp , Dec Alexander May. New RSA Vulnerabilities Using Lattice Reduction Methods Shiho Midorikawa katagaitai workshop winter March 18, / 142

141 Workshop VII [NSS + 17] Matus Nemec, Marek Sys, Petr Svenda, Dusan Klinec, and Vashek Matyas. The Return of Coppersmith s Attack: Practical Factorization of Widely Used RSA Moduli. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 17, pp , New York, NY, USA, ACM. [Pei13] Chris Peikert. Lattices in Cryptography - Lecture 1: Mathematical Background, http: //web.eecs.umich.edu/~cpeikert/lic15/lec01.pdf. Shiho Midorikawa katagaitai workshop winter March 18, / 142

142 Workshop VIII [PHL + 17] Liqiang Peng, Lei Hu, Yao Lu, Jun Xu, and Zhangjie Huang. Cryptanalysis of dual rsa. Designs, Codes and Cryptography, Vol. 83, No. 1, pp. 1 21, Apr [RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, Vol. 21, No. 2, pp , [ 08],,,,,,. -., Shiho Midorikawa katagaitai workshop winter March 18, / 142

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

index calculus

index calculus index calculus 2008 3 8 1 generalized Weil descent p :, E/F p 3 : Y 2 = f(x), where f(x) = X 3 + AX + B, A F p, B F p 3 E(F p 3) 3 : Generalized Weil descent E(F p 4) 2 Index calculus Plain version Double-large-prime

More information

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]

More information

( )

( ) NAIST-IS-MT0851100 2010 2 4 ( ) CR CR CR 1980 90 CR Kerberos SSH CR CR CR CR CR CR,,, ID, NAIST-IS- MT0851100, 2010 2 4. i On the Key Management Policy of Challenge Response Authentication Schemes Toshiya

More information

30 2018.4.25 30 1 nuida@mist.i.u-tokyo.ac.jp 2018 4 11 2018 4 25 30 2018.4.25 1 1 2 8 3 21 4 28 5 37 6 43 7 47 8 52 30 2018.4.25 1 1 Z Z 0 Z >0 Q, R, C a, b a b a = bc c 0 a b b a b a a, b, c a b b c a

More information

21 Key Exchange method for portable terminal with direct input by user

21 Key Exchange method for portable terminal with direct input by user 21 Key Exchange method for portable terminal with direct input by user 1110251 2011 3 17 Diffie-Hellman,..,,,,.,, 2.,.,..,,.,, Diffie-Hellman, i Abstract Key Exchange method for portable terminal with

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

1 UTF Youtube ( ) / 30

1 UTF Youtube ( ) / 30 2011 11 16 ( ) 2011 11 16 1 / 30 1 UTF 10 2 2 16 2 2 0 3 Youtube ( ) 2011 11 16 2 / 30 4 5 ad bc = 0 6 7 (a, b, a x + b y) (c, d, c x + d y) (1, x), (2, y) ( ) 2011 11 16 3 / 30 8 2 01001110 10100011 (

More information

/ ( ) 1 1.1 323 206 23 ( 23 529 529 323 206 ) 23 1.2 33 1.3 323 61 61 3721 3721 323 168 168 323 23 61 61 23 1403 323 111 111 168 206 323 47 111 323 47 2 23 2 2.1 34 2 2.2 2 a, b N a b N a b (mod N) mod

More information

特集_03-07.Q3C

特集_03-07.Q3C 3-7 Error Detection and Authentication in Quantum Key Distribution YAMAMURA Akihiro and ISHIZUKA Hirokazu Detecting errors in a raw key and authenticating a private key are crucial for quantum key distribution

More information

2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name Visualization of Code-Breaking RSA Group Name RSA C

2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name Visualization of Code-Breaking RSA Group Name RSA C 2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name RSA Group Name RSA Code Elliptic Curve Cryptograrhy Group /Project No. 13-B /Project Leader 1009087 Takahiro

More information

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha 63 KdV KP Lax pair L, B L L L / W LW / x W t, t, t 3, ψ t n / B nψ KdV B n L n/ KP B n L n KdV KP Lax W Lax τ KP L ψ τ τ Chapter 7 An Introduction to the Sato Theory Masayui OIKAWA, Faculty of Engneering,

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

ICカードに利用される暗号アルゴリズムの安全性について:ENV仕様の実装上の問題点を中心に

ICカードに利用される暗号アルゴリズムの安全性について:ENV仕様の実装上の問題点を中心に IC IC IC ICIC EMVEMV IC EMVIC EMV ICEMVRSAkey TDES TDES-MAC E-mail: masataka.suzuki@boj.or.jp NTTE-mail: kanda.masayuki@lab.ntt.co.jp IC IC IC IC EMV JCCA ICJCCA ICEMV EMVIC EMV EMV EMVEMVCo EMV EMV EMVICIC

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

28 SAS-X Proposal of Multi Device Authenticable Password Management System using SAS-X 1195074 2017 2 3 SAS-X Web ID/ ID/ Web SAS-2 SAS-X i Abstract Proposal of Multi Device Authenticable Password Management

More information

(Requirements in communication) (efficiently) (Information Theory) (certainly) (Coding Theory) (safely) (Cryptography) I 1

(Requirements in communication) (efficiently) (Information Theory) (certainly) (Coding Theory) (safely) (Cryptography) I 1 (Requirements in communication) (efficiently) (Information Theory) (certainly) (oding Theory) (safely) (ryptography) I 1 (Requirements in communication) (efficiently) (Information Theory) (certainly) (oding

More information

17 ( :52) α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1)

17 ( :52) α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1) 3 3 1 α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) 2000 2) 5 2 3 4 2 3 5 3) 2 2 4) (α β) 2 3 4 5 20 A 12 20 5 5 5) 6) 5 20 12 5 A (5) 1) Évariste Galois(1811-1832) 2) Joseph-Louis Lagrange(1736-1813) 18 3),Niels

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

3 5 18 3 5000 1 2 7 8 120 1 9 1954 29 18 12 30 700 4km 1.5 100 50 6 13 5 99 93 34 17 2 2002 04 14 16 6000 12 57 60 1986 55 3 3 3 500 350 4 5 250 18 19 1590 1591 250 100 500 20 800 20 55 3 3 3 18 19 1590

More information

2008 (2008/09/30) 1 ISBN 7 1.1 ISBN................................ 7 1.2.......................... 8 1.3................................ 9 1.4 ISBN.............................. 12 2 13 2.1.....................

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

28 Horizontal angle correction using straight line detection in an equirectangular image

28 Horizontal angle correction using straight line detection in an equirectangular image 28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image

More information

untitled

untitled i ii iii iv v 43 43 vi 43 vii T+1 T+2 1 viii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 a) ( ) b) ( ) 51

More information

2

2 1 2 3 4 5 6 7 8 9 10 I II III 11 IV 12 V 13 VI VII 14 VIII. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 _ 33 _ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VII 51 52 53 54 55 56 57 58 59

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

JST CREST at JST CREST 1

JST CREST at JST CREST 1 JST CREST at JST CREST 1 NP 2 3 I F q : q F q [x 1,..., x k ]: F q x 1,..., x k : k p = (p 1,..., p k ) T F k q : n c = (c 1,..., c n ) T F n q T : x 1,..., x k n E(x) F q [x 1,..., x k ] n : p c c = E(p)

More information

セアラの暗号

セアラの暗号 1 Cayley-Purser 1 Sarah Flannery 16 1 [1] [1] [1]314 www.cayley-purser.ie http://cryptome.org/flannery-cp.htm [2] Cryptography: An Investigation of a New Algorithm vs. the RSA(1999 RSA 1999 9 11 2 (17

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

エクセルカバー入稿用.indd

エクセルカバー入稿用.indd i 1 1 2 3 5 5 6 7 7 8 9 9 10 11 11 11 12 2 13 13 14 15 15 16 17 17 ii CONTENTS 18 18 21 22 22 24 25 26 27 27 28 29 30 31 32 36 37 40 40 42 43 44 44 46 47 48 iii 48 50 51 52 54 55 59 61 62 64 65 66 67 68

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

01_.g.r..

01_.g.r.. I II III IV V VI VII VIII IX X XI I II III IV V I I I II II II I I YS-1 I YS-2 I YS-3 I YS-4 I YS-5 I YS-6 I YS-7 II II YS-1 II YS-2 II YS-3 II YS-4 II YS-5 II YS-6 II YS-7 III III YS-1 III YS-2

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:hsuzuki@icu.ac.jp 0 0 1 1.1 G G1 G a, b,

More information

NP 1 ( ) Ehrgott [3] ( ) (Ehrgott [3] ) Ulungu & Teghem [8] Zitzler, Laumanns & Bleuler [11] Papadimitriou & Yannakakis [7] Zaroliagis [10] 2 1

NP 1 ( ) Ehrgott [3] ( ) (Ehrgott [3] ) Ulungu & Teghem [8] Zitzler, Laumanns & Bleuler [11] Papadimitriou & Yannakakis [7] Zaroliagis [10] 2 1 NP 1 ( ) Ehrgott [3] 2 1 1 ( ) (Ehrgott [3] ) Ulungu & Teghem [8] Zitzler, Laumanns & Bleuler [11] Papadimitriou & Yannakakis [7] Zaroliagis [10] 2 1 1 1 Avis & Fukuda [1] 2 NP (Ehrgott [3] ) ( ) 3 NP

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

I: 2 : 3 +

I: 2 : 3 + I: 1 I: 2008 I: 2 : 3 + I: 3, 3700. (ISBN4-00-010352-0) H.P.Barendregt, The lambda calculus: its syntax and semantics, Studies in logic and the foundations of mathematics, v.103, North-Holland, 1984. (ISBN

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

( ) ( ) 1729 (, 2016:17) = = (1) 1 1 1729 1 2016 10 28 1 1729 1111 1111 1729 (1887 1920) (1877 1947) 1729 (, 2016:17) 12 3 1728 9 3 729 1729 = 12 3 + 1 3 = 10 3 + 9 3 (1) 1 1 2 1729 1729 19 13 7 = 1729 = 12 3 + 1 3 = 10 3 + 9 3 13 7 = 91

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

半 系列における記号の出現度数の対称性

半  系列における記号の出現度数の対称性 l l 2018 08 27 2018 08 28 FFTPRSWS18 1 / 20 FCSR l LFSR NLFSR NLFSR Goresky Klapper FCSR l word-based FCSR l l... l 2 / 20 LFSR FCSR l a m 1 a m 2... a 1 a 0 q 1 q 2... q m 1 q m a = (a n) n 0 R m LFSR

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

.,.,..,? 2.,.?.,...,...,.,.,.,.,,..,..,,.,,.,.,..,..,....,.,.,.,?,...,,.... Dr.Hener, i

.,.,..,? 2.,.?.,...,...,.,.,.,.,,..,..,,.,,.,.,..,..,....,.,.,.,?,...,,.... Dr.Hener, i 2006 D r. H e n e r 18 4 1 .,.,..,? 2.,.?.,...,...,.,.,.,.,,..,..,,.,,.,.,..,..,....,.,.,.,?,...,,.... Dr.Hener, i 1 2 1 1.1 2 10..................................... 1 1.2 2......................................

More information

¥µ¥¤¥Ü¥¦¥º¡¦¥é¥Ü¥æ¡¼¥¹ À®²ÌÊó¹ð

¥µ¥¤¥Ü¥¦¥º¡¦¥é¥Ü¥æ¡¼¥¹ À®²ÌÊó¹ð Python March 30, 2016 1 / 30 who? @elliptic shiho 0x10, CTF March 30, 2016 2 / 30 why? Python sage 1,, 1 NumPy, Cython Python March 30, 2016 3 / 30 why?,. -, -,, March 30, 2016 4 / 30 , E : y 2 = x 3 +

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 () - 1 - - 2 - - 3 - - 4 - - 5 - 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x A( ) 1 1.1 12 3 15 3 9 3 12 x (x ) x 12 0 12 1.1.1 x x = 12q + r, 0 r < 12 q r 1 N > 0 x = Nq + r, 0 r < N q r 1 q x/n r r x mod N 1 15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = 3 1.1.2 N N 0 x, y x y N x y

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D>

<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D> i i vi ii iii iv v vi vii viii ix 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

More information

SC-85X2取説

SC-85X2取説 I II III IV V VI .................. VII VIII IX X 1-1 1-2 1-3 1-4 ( ) 1-5 1-6 2-1 2-2 3-1 3-2 3-3 8 3-4 3-5 3-6 3-7 ) ) - - 3-8 3-9 4-1 4-2 4-3 4-4 4-5 4-6 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-10 5-11

More information

2011 8 26 3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy

More information

困ったときのQ&A

困ったときのQ&A ii iii iv NEC Corporation 1997 v P A R T 1 vi vii P A R T 2 viii P A R T 3 ix x xi 1P A R T 2 1 3 4 1 5 6 1 7 8 1 9 1 2 3 4 10 1 11 12 1 13 14 1 1 2 15 16 1 2 1 1 2 3 4 5 17 18 1 2 3 1 19 20 1 21 22 1

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

RSA署名方式の安全性を巡る研究動向について

RSA署名方式の安全性を巡る研究動向について RSA RSA RSA RSA RSA RSA PSSRSA PSS RSARSA PSS RSA PSS RSARSA-PSS E-mail:mayumi.saitou@boj.or.jp RSARSA PKCS ISO ISO IPS ANS X RSARSA RSA RSA RSA RSA RSA RSA bit RSA RSA PSS RSA PSS RSA ISO PKCSVer RSA

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

[I486S] 暗号プロトコル理論

[I486S]  暗号プロトコル理論 [I486S] 2018 5 1 (JAIST) 2018 5 1 1 / 22 : I486S I URL:https://wwwjaistacjp/~fujisaki/i486S (Tuesdays) 5 17:10 18:50 4/17, 4/24, 5/1, 5/15, 5/22, 5/29, 6/5, 6/19, 6/26, 7/3, 7/10, 7/17, 7/24, 7/31 (JAIST)

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

i ii iii iv v vi vii ( ー ー ) ( ) ( ) ( ) ( ) ー ( ) ( ) ー ー ( ) ( ) ( ) ( ) ( ) 13 202 24122783 3622316 (1) (2) (3) (4) 2483 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 11 11 2483 13

More information

四変数基本対称式の解放

四変数基本対称式の解放 Solving the simultaneous equation of the symmetric tetravariate polynomials and The roots of a quartic equation Oomori, Yasuhiro in Himeji City, Japan Dec.1, 2011 Abstract 1. S 4 2. 1. {α, β, γ, δ} (1)

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 1, 2 1 1 1 Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 Nobutaka ONO 1 and Shigeki SAGAYAMA 1 This paper deals with instrument separation

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

2013 M

2013 M 2013 M0110453 2013 : M0110453 20 1 1 1.1............................ 1 1.2.............................. 4 2 5 2.1................................. 6 2.2................................. 8 2.3.................................

More information

Bulletin of JSSAC(2014) Vol. 20, No. 2, pp (Received 2013/11/27 Revised 2014/3/27 Accepted 2014/5/26) It is known that some of number puzzles ca

Bulletin of JSSAC(2014) Vol. 20, No. 2, pp (Received 2013/11/27 Revised 2014/3/27 Accepted 2014/5/26) It is known that some of number puzzles ca Bulletin of JSSAC(2014) Vol. 20, No. 2, pp. 3-22 (Received 2013/11/27 Revised 2014/3/27 Accepted 2014/5/26) It is known that some of number puzzles can be solved by using Gröbner bases. In this paper,

More information

,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw

,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw ,.,. NP,.,. 1 1.1.,.,,.,.,,,. 2. 1.1.1 (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., 152-8552 2-12-1, tatsukawa.m.aa@m.titech.ac.jp, 190-8562 10-3, mirai@ism.ac.jp

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

2014 x n 1 : : :

2014 x n 1 : : : 2014 x n 1 : : 2015 1 30 : 5510113 1 x n 1 n x 2 1 = (x 1)(x+1) x 3 1 = (x 1)(x 2 +x+1) x 4 1 = (x 1)(x + 1)(x 2 + 1) x 5 1 = (x 1)(x 4 + x 3 + x 2 + x + 1) 1, 1,0 n = 105 2 1 n x n 1 Maple 1, 1,0 n 2

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

i

i i ii iii iv v vi vii viii ix x xi ( ) 854.3 700.9 10 200 3,126.9 162.3 100.6 18.3 26.5 5.6/s ( ) ( ) 1949 8 12 () () ア イ ウ ) ) () () () () BC () () (

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

第8章 位相最適化問題

第8章 位相最適化問題 8 February 25, 2009 1 (topology optimizaiton problem) ( ) H 1 2 2.1 ( ) V S χ S : V {0, 1} S (characteristic function) (indicator function) 1 (x S ) χ S (x) = 0 (x S ) 2.1 ( ) Lipschitz D R d χ Ω (Ω D)

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

2016

2016 2016 1 G x x G d G (x) 1 ( ) G d G (x) = 2 E(G). x V (G) 2 ( ) 1.1 1: n m on-off ( 1 ) off on 1: on-off ( on ) G v v N(v) on-off G S V (G) N(v) S { 3 G v S v S G G = 1 OK ( ) G 2 3.1 u S u u u 1 G u S

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information