Similar documents
untitled

スーパーカミオカンデにおける 高エネルギーニュートリノ研究

Microsoft PowerPoint - okamura.ppt[読み取り専用]

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

nakajima_

Solar Flare neutrino for Super Novae Conference

Muon Muon Muon lif

1 223 KamLAND 2014 ( 26 ) KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR ν e ν µ ν τ ν 1 ν 2 ν MNS m 2 21

untitled

GJG160842_O.QXD

FPWS2018講義千代

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

untitled

main.dvi

25 3 4

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

目次 T2K 実験 ニュートリノ振動解析 外挿 ( 前置検出器 後置検出器 ) の 手法 Toy MCによるデモンストレーション まとめ 2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

nenmatsu5c19_web.key

rcnp01may-2

抄録/抄録1    (1)V

09_organal2


PowerPoint Presentation

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary

Strangeness spin in the proton studied with neutrino scattering

Mott散乱によるParity対称性の破れを検証

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

第90回日本感染症学会学術講演会抄録(I)

Drift Chamber

nakayama.key

Ł\”ƒ-2005

HK-Yokoyama-ICRR2013.key

05/09/2009

21 Daya Bay θ 13 Lawrence Berkeley National Laboratory Brookhaven National Laboratory 2012 ( 24 ) Daya Bay 2011

LHC-ATLAS Hà WWà lνlν A A A A A A

総研大恒星進化概要.dvi

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( )

QMI_10.dvi

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

Donald Carl J. Choi, β ( )

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

B

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

B

J-PARC October 14-15, 2005 KEK

QMII_10.dvi

LLG-R8.Nisus.pdf


PowerPoint Presentation

T2K実験とは T2K実験 東海-神岡295km 長基線ニュートリノ振動実験 T2K実験の目的 1. νe appearanceの探索 T2K俯瞰図 νe SK 295km J-PARC θ13 の測定 (感度 sin 2θ13>0.006) P(νμ νe) = s223sin22θ13sin2(

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

soturon.dvi

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

Microsoft Word - 4NMR2.doc

untitled

150518_shin_gakujutsu


A

CVMに基づくNi-Al合金の

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

main.dvi

Canvas-tr01(title).cv3

SC Ł\†EŒÚ M-KL.ec6

Chadwick [ 1 ] 1919,, electron number Q kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e =

PowerPoint プレゼンテーション

Slide 1

Hasegawa_JPS_v6

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

untitled

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

201711grade1ouyou.pdf

本文/目次(裏白)

untitled

7-1yamazaki.pptx


TOP URL 1

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete

I II III IV V

修士論文

Transcription:

KamLAND

(µ) ν e RSFP + ν e RSFP(Resonant Spin Flavor Precession) ν e RSFP 1. ν e ν µ ν e RSFP.ν e νµ ν e νe µ

KamLAND νe KamLAND (ʼ4). kton-day 8.3 < E ν < 14.8 MeV candidates Φ(νe) < 37 cm - s -1 P(νe νe) <.8-4 (9% C.L.) 7 5 5 kton-day ( )

ν e 1. cm - s -1 (9% C.L.) (E ν > 19.3 MeV) for constant SN rate model Super-Kaimiokande SK νe Reactor νe 8 B solar νe hep νe Atmospheric νe KamLAND

ν e β : νe + p e + + n γ e + e - γ : e + + e - γ Eprompt = E ν - Tn -.784 MeV ν e p n μsec σtot () = π /me 5 f R τn γ Ee () pe () τn = 885.7 ±.8 sec d cm ] 4 Cross Section [! Cross Section 5 15 : n + p d + γ Edelayed =. MeV.% 5 4 6 8 1 14 16 18 Neutrino Energy [MeV]

νe 7.5 < Eprompt < 3. MeV 1.8 < Edelayed <.6 MeV.5 < ΔT <. µsec ΔR < 16 cm Rprompt, Rdelayed < 6 cm µ (ΔQ> 6 p.e.) sec veto µ (ΔQ< 6 p.e.) Events/.1MeV 3 Reactor e w/ oscillation Geo e 8 B = 8 e B e (.8 SRN (LL model) -4 ) 3m sec veto e - ν µ 1 C µ - τ=.μsec X µ 1-1 ν µ ν e β,γ 3m - 4 6 8 1 14 E prompt [MeV] 7.5MeV

1.. 3. 9 Li 4. 5.

1. NUANCE ( ) Geant4 NC ν(ν) + 1 C ν(ν) + n + 11 C CC ν(ν) + 1 C l - (l + ) + n + + X ν + p l + + n -1 [m sec sr GeV] 4 3 1 µ µ e e NUANCE Fermi gas model νe, ν µ, νe, ν µ / π CH(.78g/cm 3 ) 9m -1 - -3-4 -5-6 -7-8 -9 - -11-1 : % M.Honda, et al., ʼ5-1 1 3 4 neutrino energy [GeV] full mixing 5% (CC )

.6% L.A.Ahrens, et al., (ʼ87) Q <.45 (GeV/c) 71.7% σ =. (flux)+.6 ( ) Events/.5(GeV/c) 8 6 4 71.7% = 8.7% cm /nucleon] -38 [ 3 1 1-1 nc free proton nc bound neutron nc bound proton -..4.6.8 1 q [(GeV/c) ] -3 1 1.5.5 33 3.5 44 4.5 55 5.5 6 [MeV] E µ 6

5% E <.4 GeV 18.3% flux : % : 5% : 5% 59.4% Event/.5GeV 9 8 7 6 18.3% cm /nucleon] -38 3 1 cc free proton cc bound neutron cc bound proton 5 4 3 [ 1-1 1.1..3.4.5.6.7.8.9 1 Energy [GeV] - -3 1 1.5.5 33 3.5 44 4.5 55 5.5 6 E µ [MeV] 6

Events/.5MeV 14 /ndf =.3 / 7 1 8 6 4 Probability = 17.% f(e) = 171.19 exp(-e / 19.76) /ndf = 9.8 / 7 Probability = 19.8% f(e) = -.9 E +.7 KamLAND σ = 7/7= 19.% 3 4 5 6 7 8 9 E prompt [MeV] (5kton-day) NUANCE σ = 8.7% 7.5 < Eprompt < 15. MeV 7.5 < Eprompt < 3. MeV 11.9 ± 3.4 7. ± 7.7 1.6 ± 1. 3.8 ±.3 1

. μ μ MUSIC/MUSUN (3 ) Geant4 n n p Events/7MeV 9 8 7 6 5 4 3 Measurement MC (tracked muon) MC (untracked muon) 3 4 5 6 7 Visible Energy (MeV) (5kton-day) 3 Events/m 3 35 4 45 5 55 6 65 7 Prompt Event Radius (cm) 7.5 < Eprompt < 15. MeV 7.5 < Eprompt < 3. MeV 1. ± 1.. ±..5 1.5 1.5 Measurement MC (tracked muon) MC (untracked muon)

3. 9 Li 9 Li μ 6 dq > events /.1 sec 4 35 3 5 15 p.e. μ 9 Li / ndf 3.49 / 18 9 8 9 He/ Li Li 959.1 ± 33.3 Offset 5.79 ±.84 β n τ = 57. msec, Q = 13.6 MeV, β - + n 6 dq < events /.1 sec 5 4 35 3 5 15..4.6.8 1 1. 1.4 1.6 1.8 time difference from muon [sec] p.e., dl < 3 m μ 3m 9 Li / ndf 1.43 / 18 9 8 9 He/ Li Li 336.6 ± 6. Offset 33.51 ± 1.59 μ 959.1 ± 33.3 sec veto.4 ±.1 μ 336.6 ± 6. 3m sec veto 14.9 ± 1. 7.5 MeV 19.7% 3. ±.3 events / bin 5..4.6.8 1 1. 1.4 1.6 1.8 time difference from muon [sec] 45 4 35 3 5 15 3m 6 dq < p.e 95.8 % within 3m 95.8% 5 3 4 5 6 7 8 9 distance from muon track [cm]

4. νe neutrino spectrum [/fission/mev] 1-1 - -3-4 -5 νe 35 U 38 39 41 U Pu Pu Events/.1MeV 3 1 KamLAND -6 4 6 8 neutrino energy [MeV] 8MeV Double Chooz (hep-ex/453) -1-4 6 8 1 14 E prompt [MeV] 1.5 ±.5

5. Events/.MeV 5 15 7.5MeV 3MeV.sec 1.sec 3 161 ->.161 Events/.4sec 5 15 161 ->.161 5 5 5 15 5 3 E prompt [MeV]..4.6.8 1 1. 1.4 1.6 T [sec]. < ΔT < 1. sec 1/. ±.1

7.5 Eprompt 15. MeV 7.5 Eprompt 3. MeV 11.9 ± 3.4 7. ± 7.7 1.6 ± 1. 3.8 ±.3 1. ± 1.. ±. 9 Li 3. ±.3 3. ±.3 1.5 ±.5 1.5 ±.5. ±.1. ±.1 19. ± 3.7 37.5 ± 8.3

7.5 < Eprompt < 15. MeV 19.3 ± 3.7 ( ) σ σ = Confidence interval P (N) = σ = 15.8 8.3 dσ de ν SdE ν 15.8 8.3 SdE ν 8.89-4 cm ( νe) ={6.88-4 cm ( 8 Bνe) 1 (ν Nexp ) πσ e σ ν N (N unknown σ sys ) +(N BG σ BG ) BPS8(GS) 8 Bνe W.T.Winter, et al.(ʼ6) νe Lawrence Livermore group (T.Totani, et al., ʼ98) N! e ν dν Nunknown : 8 Bνe or νe ( ) NBG (19.3 ) N exp = Nunknown + NBG σsys =.% σbg = 19.%

Events/MeV 1 8 B (9% C.L.).3 events SRN (9% C.L.) 11. events Reactor 1.5 events 9 Li 3. events Neutral Current 11.9 events Charged Current 1.6 events 8 Fast Neutron 1. events Accidental. events 6 NUANCE KamLAND 4 8 9 11 1 13 14 15 E prompt [MeV] (9%C.L.) 8 Bνe KamLANDʼ4 νe Flux [cm - s -1 ] 6 37 16 νe νe 1. -4.8-4

3 7 5 5kton-day KamLAND νe 19.3 ± 3.7 (7.5 < Eprompt < 15. MeV) 37.6 ± 8.3 (7.5 < Eprompt < 3. MeV) ν e νe 1. -4 (9% C.L.) 16 cm - s -1 (9% C.L.) NC