untitled

Similar documents
st.dvi

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

2 1,, x = 1 a i f i = i i a i f i. media ( ): x 1, x 2,..., x,. mode ( ): x 1, x 2,..., x,., ( ). 2., : box plot ( ): x variace ( ): σ 2 = 1 (x k x) 2

untitled

L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P

waseda2010a-jukaiki1-main.dvi

untitled

(I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47

201711grade1ouyou.pdf


3/4/8:9 { } { } β β β α β α β β

パーキンソン病治療ガイドライン2002

研修コーナー

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β *3 2.3 * *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P + 10) 15 (µ A = µ P +

6.1 (P (P (P (P (P (P (, P (, P.

読めば必ずわかる 分散分析の基礎 第2版

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

6.1 (P (P (P (P (P (P (, P (, P.101

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

最小2乗法

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

(Frequecy Tabulatios)

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

(iii) x, x N(µ, ) z = x µ () N(0, ) () 0 (y,, y 0 ) (σ = 6) *3 0 y y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 y ( ) *4 H 0 : µ

第90回日本感染症学会学術講演会抄録(I)

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

統計学のポイント整理

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0

Ł\”ƒ-2005

sec13.dvi

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ


医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.


統計的データ解析

H22 BioS t (i) treat1 treat2 data d1; input patno treat1 treat2; cards; ; run; 1 (i) treat = 1 treat =

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

24 6 I., X, x X. Radom Samplig with Replacemet ( ) 1,.,, 1 X 1, 2 X 2,..., X., X 1, X 2,..., X ( ).,.,,. Estimate of Populatio Parameters ( ),..,,.. 6

本文/目次(裏白)

solutionJIS.dvi


untitled


renshumondai-kaito.dvi

Microsoft Word - 表紙.docx

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

2016.

第121回関東連合産科婦人科学会総会・学術集会 プログラム・抄録

量子力学 問題

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

i

: , 2.0, 3.0, 2.0, (%) ( 2.

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

Myers, Montgomery & Anderson-Cook (2009) Response Surface Methodology

untitled

24 7 I., X, x X. Radom Samplig with Replacemet ( ) 1,.,, 1 X 1, 2 X 2,..., X., X 1, X 2,..., X ( ).,.,,. Estimate of Populatio Parameters ( ),..,,.. 7

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

untitled

ohpmain.dvi

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

 NMRの信号がはじめて観測されてから47年になる。その後、NMRは1960年前半までPhys. Rev.等の物理学誌上を賑わせた。1960年代後半、物理学者の間では”NMRはもう死んだ”とささやかれたということであるが(1)、しかし、これほど発展した構造、物性の

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

t sex N y y y Diff (1-2)

tokei01.dvi

分散分析・2次元正規分布

untitled

151021slide.dvi

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

第11回:線形回帰モデルのOLS推定

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

untitled

Z: Q: R: C: sin 6 5 ζ a, b

Part () () Γ Part ,

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

untitled

keisoku01.dvi


2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

( ) ( )

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

211 ‚æ2fiúŒÚ

Transcription:

17 5 16 1 2 2 2 3 4 4 5 5 7 5.1... 8 5.2... 9 6 10 1

1 (sample survey metod) 1981 4 27 28 51.5% 48.5% 5 10 51.75% 48.24% (complete survey ( ) ) (populatio) (sample) (parameter) (estimator) 1936 200 2 N U, s f = /N (samplig fractio) N s S (support) s (probability samplig) p(s) =P (s ), s S (1) (samplig desig) s S s (samplig witout replacemet) s S (samplig wit replacemet) 2

(1) θ ˆθ E (ˆθ) =θ (2) ˆθ θ (desig ubiased estimator) (2) (asymptotic desig ubiasedess) E (ˆθ θ)/ E (ˆθ θ) 2 0 (3) (asymptotic desig cosistecy) ( ) ˆθ θ P >ɛ 0, ɛ >0 (4) θ (3) (4), N V(ˆθ)/θ 2 0 (3) (4) i π i, i, j π ij π i = P (i s), π ij = P (i, j s) s S s S π i 1 (first-order iclusio probability) π ij 2 (secod-order iclusio probability) π ii = π i N π i =, N π ij =( 1)π i j i i Z i =1 Z i =0 Z i Z i Z j E (Z i )=π i, V(Z i )=π i (1 π i ). (5) cov (Z i,z j )=π ij π i π j (6) (populatio total), Y = i U y i, (populatio mea), µ = Y/N, y i i π i > 0 (1) Horvitz-Tompso (Horvitz- Tompso estimator), π (π-estimator) Ŷ HT y i /π i (7) 3

Y, ŶHT = N Z iy i /π i (5) Ŷ HT 1/π i (desig weigt) (6) ŶHT V(Ŷ HT )= N i,j=1 π ij π i π j π i π j y i y j (8) i y i (auxiliary iformatio) x i x X (ratio estimator) Ŷ R = y i/π i x X (9) i/π i x i =1 X = N ŶR Hájek (Hájek estimator) Ŷ Haj N y i/π i 1/π i (10) (omogeeous) π i π i y i Hájek Horvitz-Tompso (7) 3 (simple radom samplig) p(s) =1/ N C 1 (frame) 1 2 π i = N, π ij = N 1 N 1 (11) 4

(i j) (11) (7), (10) ŶHT = ŶHaj π (sample mea), ȳ = 1 s y i, N Ŷ sr = N y i = N ȳ (12) (8), (11) Ŷsr V(Ŷsr )=N 2 (1 f) σ2 σ 2 (populatio variace) (13) σ 2 = 1 N 1 N (y i µ) 2 (14) (13) 1 f (fiite populatio correctio) µ ȳ µ V(ȳ) =(1 f) σ2 σ 2 ˆσ 2 = 1 1 (y i ȳ) 2 (15) (13) ˆσ 2 σ 2 E (ˆσ 2 )=σ 2 (16) f, N, N ȳ µ, (15) (16) µ 1 2α ( ) ˆσ P µ ȳ ± z α 1 f 1 2α (17) z α 100α 4 N U (stratum) U 1,,U L (stratified samplig) 5

(stratified radom samplig) (stratificatio) U Y = Y Y U N U s ( =1,,L), s π Ŷ st = ŶHT = y i /πi (18) =1 Y y i π i U i 1 V(Ŷ st )= V(Ŷ HT ) V(Ŷ st )= =1 i,j=1 π ij π i π j π i π j y i y j (19) πij U i, j 2 f = /N = f (18) π i Ŷ sr st = N ȳ (20) ȳ µ = Y /N σ 2 = i (y i µ ) 2 /(N 1) (19) Ŷsr st V(Ŷsr st )= N 2 (1 f ) σ2 (21) (20) (sample allocatio), 1,, L (proportioal allocatio) f = /N = /N = f Ŷst sr V prop = 1 f w σ 2 (22) w = N /N (stratum weigt) (liear cost fuctio) C = c 0 + c (c 0 0,c > 0: ) C (21) 1,, L (optimum allocatio) (21) = N σ / c, =1,,L (23) 6

σ 2 N,σ 2 c c c = c (23) = N σ N σ, =1,,L (24) (24) (Neyma allocatio) Ŷ sr st (21) ( ) V opt = 1 2 w σ 2 1 N w σ 2 (25) 1/N σ 2 = w σ 2 + w (µ µ) 2 Ŷsr (13) V(Ŷsr )=V prop + 1 f w (µ µ) 2 (26) (26) µ (22) (25) V prop = V opt + 1 w (σ σ) 2 (27) σ = w σ σ V(Ŷsr ) V prop V opt 5 y x x y Y 7

(ratio estimator) x X X Y π ˆX HT Ŷ HT Y (ratio estimator) Ŷ R ŶHT ˆX HT X = y i/π i x i/π i X (28) 5.1 (28) Ŷ R = ȳ x X (29) x i Ŷ R ŶR (bias) E(Ŷ R ) Y = N 2 (1 f) (Rσx 2 X σ xy) (30) σ xy = i (y i µ y )(x i µ x )/(N 1), R = Y/X ŶR (31), V(Ŷ R )= N 2 (1 f) (σy 2 + R2 σx 2 2Rσ xy) (31) ρ> 1 σ x /µ x, 2 σ y /µ y ρ = σ xy σ x σ y V(ŶR) < V(Nȳ) ŶR Nȳ y i = βx i + ɛ i, i =1,,N (32) Ŷ R (BLUE; best liear ubiased estimator) ŶR l i y i (32), x i ɛ i,ɛ j E(ɛ i )=0,V(ɛ i ) x i (32) Y = βx + N ɛ i Ŷ R E(ŶR) =E(Y) =βx 8

(model ubiasedess) (x i,y i ) y i x i Ŷ R Ŷ Rt = rx + (N 1) (ȳ r x) ( 1)X r = 1 y i/x i 5.2 X (separate ratio estimator) Ŷ Rs = ȳ x X (33) (combied ratio estimator) Ŷ Rc = N ȳ N X (34) x X ŶRs ŶRc ŶRs ŶRc V(ŶRs) = V(Ŷ Rc ) = N 2 (1 f ) (σ 2 y + R 2 σ 2 x 2R σ xy ) N 2(1 f ) (σy 2 + Rσ2 x 2Rσ xy) R V(Ŷ Rs ) < V(Ŷ Rc ) 2 (mea squared error) V(ŶRs) = N σ d N, =1,,L σ d σd 2 N σd 2 =(N 1) 1 (y i R x i ) 2 9

6 (samplig error) (delta metod) (bootstrap metod) (jackkife metod) s s θ ˆθ i ˆθ i (jackkife pseudovalue) θ i = ˆθ ( 1)ˆθ i (35) } θ i = ˆθ ( 1) {ˆθ 1 f (ˆθ ˆθ i ) (36) f = /N f 0 (36) (35) ˆθ (jackkife estimator) J(ˆθ) = 1 θ i = ˆθ ( 1)ˆθ ( ) (37) ˆθ ( ) = 1 ˆθ i ˆθ V J (ˆθ) = 1 1 ( θ i J(ˆθ)) 2 1 = 1 (ˆθ i ˆθ ( ) ) 2 (38) θ θ = l θ (39) =1 l > 0 θ Y = Y µ = w µ (39) θ ˆθ ˆθ = l ˆθ (40) =1 10

ˆθ ˆθ θ (40) ˆθ V(ˆθ) = l 2 V(ˆθ ) =1 ˆθ V Js (ˆθ) = l 2 V J (ˆθ ) (41) =1 V J (ˆθ ) (38) (37) J(ˆθ ) J s (ˆθ) = l J(ˆθ ) (42) =1 [1] W. G. Cocra, Samplig Teciques, 3, Jo Wiley, 1977. [2] C.-E. Särdal, B. Swesso, J. Wretma, Model Assisted Survey Samplig, Spriger, 2003. [3] ( ),,, 2002. [4] ( ),,, pp.242 257, 1989. 11