表層地盤における地震波のエネルギーフローの検討

Similar documents
7章 構造物の応答値の算定

Proposal of Driving Torque Control Method for Electric Vehicle with In-Wheel Motors Masataka Yoshimura (Yokohama National University) Hiroshi Fujimoto

28 Horizontal angle correction using straight line detection in an equirectangular image

chap03.dvi

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

CHARACTERISTICS OF LOVE WAVE GENERATED AROUND A DIPPING BASEMENT By Susumu NAKAMURA, Iwao SUETOMI, Shinichi AKIYAMA and Nozomu YOSHIDA Source mechanis

. km. km. km

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

Note.tex 2008/09/19( )


v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

untitled

ron.dvi

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q,

20 Microsoft Excel Adobe Acrobat Reader

untitled

04-04 第 57 回土木計画学研究発表会 講演集 vs

TOP URL 1

JFE.dvi

,,,,., C Java,,.,,.,., ,,.,, i



() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

Ł\”ƒ-2005

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho

LLG-R8.Nisus.pdf

24 Perceived depth position of autostereoscopic stimulus

第90回日本感染症学会学術講演会抄録(I)


放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactio


1 a b cc b * 1 Helioseismology * * r/r r/r a 1.3 FTD 9 11 Ω B ϕ α B p FTD 2 b Ω * 1 r, θ, ϕ ϕ * 2 *


,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

2 122

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

25 Removal of the fricative sounds that occur in the electronic stethoscope

OHO.dvi

2007-Kanai-paper.dvi

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

24 Depth scaling of binocular stereopsis by observer s own movements

,,.,.,,.,.,.,.,,.,..,,,, i

untitled

keisoku01.dvi

日歯雑誌(H19・5月号)済/P6‐16 クリニカル  柿木 5

I II III IV V

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

Microsoft Word - 学士論文(表紙).doc

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

液晶の物理1:連続体理論(弾性,粘性)

201711grade1ouyou.pdf

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

プログラム

2012専門分科会_new_4.pptx

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1

e-learning station 1) 2) 1) 3) 2) 2) 1) 4) e-learning Station 16 e-learning e-learning key words: e-learning LMS CMS A Trial and Prospect of Kumamoto

1 Flores, D. (009) All you can drink: should we worry about quality? Journal of Regulatory Economics 35(1), Saggi, K., and Vettas, N. (00) On in

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

R927清水信彦様.indd

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

untitled

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2



IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

2000年度『数学展望 I』講義録

,398 4% 017,

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

Chap10.dvi

1 P2 P P3P4 P5P8 P9P10 P11 P12

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

Mott散乱によるParity対称性の破れを検証

- March IMF IMF IMF ITO The General Agreement on Tariffs and Trade

yasi10.dvi


, IT.,.,..,.. i

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

29 jjencode JavaScript

本文/目次(裏白)

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i


ha38. 3ha 35. 4ha 3. 4km 40ha B. C m 40m 2. 5m 4 5m b 14 3, 4, 5 2 a 2 a, 3 a 25m 10m 4 9 MH 52 68% 3 b 10 30cm 6,7, 8 JIS A12

IPSJ SIG Technical Report Vol.2014-EIP-63 No /2/21 1,a) Wi-Fi Probe Request MAC MAC Probe Request MAC A dynamic ads control based on tra

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.


Transcription:

SH

E E V t k e V t t d d Ek = ρv 0 t d = ρv t dt dt E e t γ d e = 0 τ γ = γ = ρ E V t d V t V t dt () E E k d E = Ek + Ee = ρv t e dt

E t = de dt Seimogragh Layer No. rond A rface h d E de dt = ρv E h dt Srface layer B E A m B m m h E E m t de t d d E = dt = ρ t V dt dt t dt C A n n B n E E d z Bae layer z i( ω t+ kz) i( ωt kz) = Ae + Be t ω A, B k k = ρω ρ D D = ( + id) A, B A B m m m+, m+ km m kmm ikmh k m m m km + + + + + m ikmhm e e Am + km m km + + + m+ Am Am T = = m Bm k B + + m m kmm ikmh k m m m kmm ik m B + + + + + m mh m e e km+ m+ km+ m+ 3

h m n z iωt iωt m = Ume = ( Am + Bm) e iωt iωt n = Une = ( An + Bn) e T m+ An Am Am T T m [ Tn][ Tn ] T m+ T A = = n, m+ = B n B m B T T m Bm Tnm, + = [ Tn][ Tn ] T m+ T, T, U, U m n Un T + T T + T Am Am P = = nm, + Um B m Bm Am Un An Un P nm,, + Tnm, + P = nm, + B = m Um B n Um ω ω D 4

(a) PI L-0m S L-4.0m CH (c) TKS L-0m A WL (m 40 C L-00m Damping ratio D (%) 0 5 0 5 0 SF L-.5m M L-5m 0 00 0 00 400 600 D epth 60 A B L-6.4m 0 B S L-3.4m 40 S ) (m 60 CH D epth 80 C L-83.4m M S CH ) Seimogragh Damping ratio D (%) 0 0 0 40 60 WL 80 S-wave velocity V (m/) (b) SK Damping ratio D (%) A L-0m 0 4 8 6 0 SF WL 0 L-.0m M B SF L-5m 0 ) CH (m 40 S CH D epth 60 CH 00 C L-97m 00 0 00 400 600 CH 0 00 00 300 400 500 Seimograph S-wave velocity V (m/) Seimograph S-wave velocity V (m/) (d) KNK Damping ratio D (%) L-0m 0 5 0 5 0 A S WL M 0 L-.0m S V-initial M 0 B V-inv.NS S L-5m V-inv.EW C M ) 40 D-inv.NS SF (m D-inv.EW M M 60 F D epth M 80 Rock C L-00m 00 0 000 000 Seimograph CH 80 S-wave velocity V (m/) 5

6

E E d E E w 7

( de dt) L 8.4 ( de dt) L 3.4 de dt ( de dt) max E 8

(a) z ρ V A Ep Layer bondary A E E B d ρ V (b) Ed E ρ ρ V V k = ω V k = ω V i( t kz) = Ae ω i( ωt kz ) i( ωt+ kz ) = A e + B e z = 0 A A B α = ρv ρv E p E α = ρv ρv 9

( ) A A = + α ( ) ( ) B A = α + α ( ) E E = 4α + α p d ( ) ( ) E E = α + α V /(+ ( d dt) ρ V z z = 0 A B A B i( ωt kz) i( ωt+ kz) = Ae + Be i( ωt kz) i( ωt+ kz) = Ae + Be ikh B A = e A = A B A = ( + α ) + ( α ) ( α ) + ( + α ) ( + α ) + ( α e )e ik H ik H e ik H z, ρ,v, ρ,v A Srface layer A A E E A B B Bae layer E Ed H 0

A A = ik H + + e ik H ( α ) e ( α ) α k πf α= ρv ρ V ω= ρ, ρ V, V ρv + id α = = α ρ V + id ρω π f = H= V 4H kh ( + id) D, D ( de dt) ( de dt) ( ) ( ) de dt de dt = α A A ( ded dt) ( ) ( ) d A de dt de dt = B α = ρv ρ V α = ρv ρv ( de dt) ( de dt) dew dt de dt de dt de dt ( ) ( ) w ( ) ( ) ( ) ( ) dew dt de dt = d de dt de dt ( ) ( ) de dt de dt α ( ) ( ) α = de dt de dt α = ρ V ρv α < f V 4H =.0 = 4H α > f V 4H =.0 ( dew dt) ( de dt) H =

de dt de dt D f V 4H =.0 de dt ( ω = n+ ) πv H n de ( n ) k H = ω H V = + π ( ) ( ) dt de dt = α f V 4H 0. 6 f V 4H. 4 de dt de dt ( ) ( ) de dt de dt α w D f V 4 H =. 0 D de dt w de w dt de dt w H ρ V D ρ V =330m/ D =0% V E D α D E E ( E Ed) ( E Ed)

α ( E Ed) = 0 E αρ ρ E α αρ ρ α E E E αρ ρ E 3

( ) ( ) de dt de dt max max α E E α w E E w E w E E E E E E de dt de dt D ( ) ( ) max α V V V f 0 n max Vi = 4 i= Hi f V H 0 V V V E E E E w 4

E E E E w Ew E E w E E E E w E E w E α 89 5

Fondation grond,, z Et Et Shear-vibrating trctre ρt, V ρ,v E E d t H t γ z ikh B A = e ( ) γ = kaink H z e ω i( t kh ) H H t ρ ρ t Vt de dt det dt de dt de dt A A t A A α α t k k t γ de dt / 4inkt ( Ht z) αt de γ = ik 3 t Ht ikt Ht ( αt ) e ( α dt t ) e ρtv + + t V ( ) k ρ V α t de dt V t / γ de dt = γ = ω= πvt H α ρ V max / 3 t t t α α t ( ) ( ) t α t t de dt de dt = A A t t 6

( ) ( ) { } 3 in t t t t t de dt k H z V γ = ρ ( ) t de dt t de dt γ γ y γ y = γ γ µ t V t ρ V ρv 7

E E E E ( ) d d E E w ) E E ) E E E w E E E E E w 3) 4) 5) E E E E 6) E E E E 7) E E E E w 8) E E w 9) E E 0) ) ) 3) 8

995 ) tenberg, B. and Richter, C.F.: Earthqake magnitde, intenity, energy and acceleration (econd paper), Blletin of Seimological Society of America, Vol.46, 956, pp.05-45. ) 3) pp.89-90. 4) Kanai, K., Tanaka, T., Yohizawa, S.:Comparative tdie of earthqake motion on the grond and ndergrond, Blletin of the Earthqake Reearch Intitte, Tokyo Univerity, Vol.37, 959, pp.53-87,. 5) Kanai,K., Tanaka, T., Yohizawa, S., Morihita, T., Oada, K. and Szki,T.: Comparative tdie of earthqake motion on the grond and ndergrond II, Blletin of the Earthqake Reearch Intitte, Tokyo Univerity, Vol.44, 966, pp.609-643. 6) Schnabel, P.B., Lymer, J. & Seed, H.B.: SHAKE, A compter program for earthqake repone analyi of horizontally layered ite. Report EERC 7-, Univerity of California Berkeley, 97. 8) Kokho, T. and Motoyama, R.: Energy diipation in rface layer de to vertically propagating SH wave, Jornal of eotechnical and eoenvironmental Engineering, ASCE, Vol.8, No.4, 00, pp.309-38. 9) Kokho,T., Matmoto,M. and Sato,K.: Nonlinear eimic propertie back-calclated from trong motion dring Hyogoken-Namb EQ, Proc. World Conference on earthqake Engineering (Acaplco), 996, CD-pblication. 0) Sato,K., Kokho,T., Matmoto,M., and Yamada, E.Nonlinear eimic repone and oil property dring trong motion, Soil and Fondation Special Ie for the 995 Hyogoken Namb earthqake, 996, pp.4-5. Yohida, N.: Nonlinear behavior of rface depoit dring the 995 Hyogoken-Namb earthqake, Special Ie of Soil and Fondation, 998, pp.-. Romo, M. P.: Clay behavior, grond repone and oil-trctre interaction tdie in Mexico City, Proc. 3 rd International Conf. on Recent Advance in eotechnical Earthqake Engineering and Soil Dynamic, St. Loi, Vol.II, 995, pp.039-05. 9

Energy Flow of Seimic Wave in Srface rond for Performance-Baed Deign KOKUSHO Takaji ), MOTOYAMA Ry-ichi ), MANTANI Shogo ) and MOTOYAMA Hirohi 3) ) Profeor, Faclty of Science & Engineering, Cho Univerity ) Ex-gradate tdent, School of Science & Enginnering, Cho Univerity 3) radate tdent, School of Science & Enginnering, Cho Univerity ABSTRACT Energy flow of eimic wave oberved dring the 995 Hyogo-ken Namb earthqake in vertical array ite i calclated by aming vertical propagation of SH wave in rface layer. In order to baically ndertand the relt, wave energy and it diipation in linear to 5 layer ytem are alo invetigated. The major finding are; () Wave energy generally tend to decreae a it goe p from bae layer to grond rface, () The amont of pward energy depend on the reonant condition, the impedance ratio, oil damping, the nmber of oil layer, etc. (3) A general perception that oft oil ite are prone to heavier damage de to energy torage effect by reonance may not be right, becae large damping ratio tend to cancel reonant effect if it ever occr. The wave energy, which i directly related to indced train in pertrctre, can play a key role for the performance-baed deign. For that prpoe, deign eimic motion hold be defined in term of wave energy. Key Word: Seimic wave energy, SH wave, Impedance ratio, Damping, Performance-baed deign 0