(2) N elec = D p,q p,q χ q χ p dr = p,q D p,q S q,p Mulliken PA D Mull p = p = group A D p,p 1 + D p,q S q,p p q p [ r A D Mull p ] group χ p G Mull A

Similar documents

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

Part () () Γ Part ,

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

all.dvi

和佐田P indd

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


Note.tex 2008/09/19( )

TOP URL 1

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

P 和佐田.indd

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence


1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc


( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

TOP URL 1

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )


Gmech08.dvi

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

36 th IChO : - 3 ( ) , G O O D L U C K final 1

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

chap9.dvi

多体問題

Z: Q: R: C: sin 6 5 ζ a, b

meiji_resume_1.PDF

QMII_10.dvi

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

note4.dvi


18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

master.dvi

薄膜結晶成長の基礎2.dvi

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

Gmech08.dvi

『共形場理論』

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Untitled


. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

Undulator.dvi

基礎数学I

1

1).1-5) - 9 -

数学Ⅱ演習(足助・09夏)

SUSY DWs

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

B ver B

量子力学 問題

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

: , 2.0, 3.0, 2.0, (%) ( 2.

スケーリング理論とはなにか? - --尺度を変えて見えること--

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e


b3e2003.dvi

転位の応力場について


0406_total.pdf

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

Chadwick [ 1 ] 1919,, electron number Q kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e =

IA

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

4 1 Ampère 4 2 Ampere 31

Dynkin Serre Weyl

Transcription:

7 - (Electron-Donor Acceptor) : Charge-Transfer ( CT) ( (Charge-Transfer) - (electron donor-electron acceptor) [1][2][3][4] Van der Waals CT [5] Population Analysis population analysis ( ), observable physical property population analysis - (electron donor-electron acceptor) population analysis 7.1 Population Analysis Population analysis(pa) Population analysis Mulliken PA[6] Löwdin PA[7] Weinhold Natural PA[8][9] PA 1 ( ) ρ(r) i = i n i ϕ i ϕ i (1) n i c p,i χ p χ q c q,i D p,q χ p χ q p,q (2) p,q D CΩ C, [Ω] i,j = n i δ ij ϕ i n i χ p D p,q D ( { χ p }) ρ(r) ρ(r)dr =N elec 138

(2) N elec = D p,q p,q χ q χ p dr = p,q D p,q S q,p Mulliken PA D Mull p = p = group A D p,p 1 + D p,q S q,p p q p [ r A D Mull p ] group χ p G Mull A A D Mull p (3) G Mull A (4) ( ( p A ( ) S q,p D Mull p D Mull p = χ p ρ(r) χ p PA χ p Löwdin PA Löwdin PA χ L = χs 1 2 (5) D Lw r = χ L r ρ(r) χ L r = D p,q χ L r χ p χ q χ L r p,q = p,q ] D p,q [S 1 2 s,t = D p,q [S 1 2 p,q [ ] = S 1 1 2 DS 2 r,r ] r,p r,s S s,p S q,t [S 1 2 ] t,r [ ] S 1 2 = [ ] [ ] S 1 2 D p,q S 1 2 q,r r,p q,r p,q (6) (7) (8) S 1 2 DS 1 2 7.1.1 Natural Population Analysis Weinhold Natural PA Natural Atomic Orbital Gaussian Gamess Weinhold know-how [10] ρ(r) χ NPA r [10] 1 139

{ χ p } { χ A p } D A 1 pre-nao(natural Atomic Orbital) 1-1: (p x, y, z d x 2, y 2, z 2, xy, xz, yz) (l, m), χ sph = χt sph (9) C sph = T sph C (10) D sph = T sph DT sph = T sph CΩ CT sph = C sph Ω C sph (11) S sph = T sph ST sph (12) D sph (S sph ) A, (l, m) D (A,l,m) (S (A,l,m) ) 1-2: A m A (l = 0, 1, 2, ) M (A,l) [ D (A,l)] p,q 1 2l + 1 [ S (A,l)] p,q 1 2l + 1 l m= l l m= l [ D (A,l,m)] p,q [ S (A,l,m)] p,q D (A,l), S (A,l) M (A,l) (13) (14) D (A,l) U (A,l) = S (A,l) U (A,l) Ω (A,l) (15) M (A,l) pre-nao η (A,l,m) = χ sph(a,l,m) U (A,l) (16) Ω (A,l) pre-nao [ 1-3: ANO Ω (A,l)] k = 1,, M (A,l) pre-ano k,k pre-ano natural minimal basis (NMB) Li Be s (l = 0) 2 B Ne s (l = 0) 2 (1s 2s ) p (l = 1) 1 (2p ) M (A,l) NMB pre-ano natural Rydberg Basis (NRB) Weinhold NMB NRB 2 pre-ano Population analysis AO (weighted 140

interatomic orthogonalization) NMB NRB NRB NMB Schmidt µ = {µ i ; i = 1, M} ν = {ν i ; i = 1, M} ν= µv (17) νν= 1 2 2-1: NMB A l,m M (A,l) k [ M ν i µ i 2 = minimum (18) i M w i ν i µ i 2 = minimum (19) i Ω (A,l)] η (A,l,m) k k,k O M W NMB η (A,l,m) 2 = minimum (20) k χ ONMB = χt sph U (A,l) O M W (21) 2-2: NRB NMB Schmidt O S NRB 1-2 1-3 NRB [ Ω (A,l)] NMB k,k 1-2,1-3 U (A,l) O S NRB T sph U (A,l) O S U (A,l) χ NRB = χt sph U (A,l) O S U (A,l) (22) χ ONRB = χ NRB O R W (23) 141

3 ( χ ONMB, χ ONRB) Natural AO 1-2,1-3 N restore ANO χ ANO χ ANO (6) χ NRB χ ONRB N restore (24) D ANO r = χ ANO ρ(r) χ ANO r r (25) Population analysis 7.2 Mulliken [4] Mulliken (Molecular Orbital Theory) Mulliken school 1966 Mulliken MO VB MO ( D A D + A DA (26) DA DA Mulliken DA Ψ N = aφ 0 (D A) + bφ 1 (D + A ) (27) (no-bond) (dative) resonance (2 2) Φ 0 Ĥ Φ 0 Φ 0 Ĥ Φ 1 Φ 1 Ĥ Φ 0 Φ 1 Ĥ Φ 1 a b = E 1 Φ 0 Φ 1 Φ 1 Φ 0 1 a b (28) W 0 Φ 0 H Φ 0, W 1 Φ 1 H Φ 1, W 01 Φ 1 H Φ 0 = Φ 0 H Φ 1, S Φ 1 Φ 0 = Φ 0 Φ 1 142

W 0 E W 01 SE W 01 SE W 1 E E (W 01 SW 0 ) SE (W 01 SW 0 ) SE E = 0 (29) = 0, E E W 0 (30) E ± = 1 W 0 + W 1 (1 S 2 SW 01 ± ) 2 ( ) 2 + β 0 β 1 2 W 1 W 0 β 0 W 01 W 0 S, β 1 W 01 W 1 S β 0, β 1 7-1 7-1 W 0 < W 1 Ψ N Φ 0 (D A) Ψ V Φ 1 (D + A ) Charge-transfer transition 3 Φ 1 (D + A ) Ĥ Φ 1 (D + A ) Φ 0 (D A) Ĥ Φ 0(D A) [ Φ(D + ) Ĥ D Φ(D + ) Φ(D) Φ(D) ] ĤD [ Φ(A + ) Ĥ A Φ(A ) ] Φ(A) ĤA Φ(A) + [ V (D + A ) V (D A) ] (31) H D (H A ) D(A) V (D + A ), V (D A) D + A D A D I E (D) I E (D) = Φ(D + ) Ĥ D Φ(D + ) Φ(D) ĤD Φ(D) 143

A A E (A) A E (A) = Φ(A) ĤA Φ(A) Φ(A ) Ĥ A Φ(A ) C(D + A ) [ V (D + A ) V (D A) ] (32) 1 R(D A) (33) I E (D) A E (A) C(D + A ) β 0 (β 1 ) (4 29) v QP P S Φ 1 Φ 0 S ( ) 2 β 0 β 1 2 ( ) 2 ( ) [ ] + β 0 β 1 1 + β 0β 1 2 2 2 ( ) 2 2 ( ) W1 W 0 = + β 0β 1 2 W 1 W 0 β 0 β 1 = β 0 (W 01 W 1 S) = β 0 {W 01 W 0 S + (W 0 W 1 ) S} = β 2 0 β 0 (W 1 W 0 ) S = β 2 1 + β 1 (W 1 W 0 ) S E N E W 0 β2 0 E V E + W 1 + β2 1 (34) (35) 7-1 4 hν CT = E V E N = W 1 W 0 + β2 1 + β 2 0 = I E (D) A E (A) C(D + A ) + β 2 1 + β 2 0 I E (D) A E (A) C(D + A ) (36) A D I E 1 I E A E 144

a, b (28) b N a N = W 0 E N W 01 SE N (37) a V b V = W 1 E V W 01 SE V (38) 34 (35) b N a N = β2 0 β 0 (1 + S β2 0 ) = (a 2 N + b2 N + 2a N b N S = 1) β 0 + Sβ 0 β 0 > 0 (39) a V β 1 = β 1 b V Sβ 1 < 0 (40) a N = 1 1 β, b 0 N = β 0 a V = β 1 1 1 + β1 1 1 β 0 b V = 1 1 + β1 (x ) (41) (42) x Ψ N x Ψ N = a 2 N Φ 0 x Φ 0 + b 2 N Φ 1 x Φ 1 + 2a N b N Φ 0 x Φ 1 D A x D A x ( β 0 x b 2 N Φ1 (D + A ) x Φ 1 (D + A ) ( ) 2 ( ) 2 β 0 1 β0 1 β R 0 D A R D A (43) ) 2 1 R 1 β 0 D A Ψ V x Ψ N b N b V Φ1 (D + A ) x Φ 1 (D + A ) ( β0 ( ) β0 ) R D A (44) 7.3 EDA(CT) DA 145

40 7-2 [11] 7-2 tetracyano-benzene 1:N,N,N N -tetramethyl-p-phenylene-diamine(tmpd), 2 N,N-dimethyl-aniline, 3:hexamethyl-benzene tetracyano-benzene(tcnb) 7-3 [11] TCNB trinitro-benzene(tnb) TCNB ( 36 1 I E ( ) 36 A E 146

7-3 trinitro-benzene(tnb) tetracyano-benzene(tcnb) ( I 2 C=O N=O 7-4 I 2 N (C 5 H 5 NO) CCl 4 1 I 2 2,3, C 5 H 5 NO 490nm( mµ (isobestic point) (σ σ ) ( ) 380nm 7-4 I 2 C 5 H 5 NO CCl 4 1 I 2 2,3, C 5 H 5 NO 147

[12] 7-5 Cl 2 Cl-Cl I E 10.13eV 8.97 8.24 7.82 7-5 HF/6-31 () [12] N Cl-Cl 7-6 C 2 H 4 C-C [13] 148

7-6 C=C [13] 43 Q s Q s 2 x Q s 2β 0R D A 2 β 0 Q s (45) Q s C=C D-A 7.4 EDA(CT) 10 2000 Horváth [14] Lewis 149

7-1 BH 3 NH 3 [14] 7-8 N-B B-H N-H 7-7 BH 3 NH3 N-H [14] [14] 7-2 LP MO 3rdSPT + dispersion [15] [16] NH 3 -SO 2 ) E 3SPT+Disp CCSD(T)/CBS 1kcal mol 1 4 6 E 3SPT E 3SPT ( 150

7-2 Hobza (ref.31 [16]) LP MO [15] kj mol 1. π tetracyanoethylene(tcne) acenaphtylene [17] 7-9 TCNE-Acenaphtylene[17] DFT [18] π T π 151

7.5 2 π 2 7-10 Pulay [19] aug-pvqz CCSD(T), QCISD(T) coupled cluster 7-10 2 7-2 T Parallel displaced (PD) 2 Note 1. 2. µ = {µ i ; i = 1, M} µ = χu µµ =ŨSU T (46) ν={ν i ; i = 1, M} = µv ν i = µ i v i 152

νν =ṼŨSUV =ṼTV = 1 (19) I = i,.j [δ ij w i (ṽ i µ i )(v i µ i ) + λ ji ṽ i v j ] ṽ i I = w i (v i µ i ) + ṽ i.j λ ji v j = 0 i = 1, M µ i w i =.j v j (δ ji w i + λ ji ) = 0 µ i w i =.j v j w j λ ji (47) λ ji λ ji δ jiw i + λ ji 21 µω = µvωλ µ TΩ = TVΩΛ (48) Λ ṼTV = 1 ṼTΩ = ṼTVΩΛ = ΩΛ 22 TΩ = TVṼTΩ V = Ω(ΩTΩ) 1/2 3. 1950 52 [1][2][3] 4. ( β 0, β 1 W 0, W 1 (W 0, W 1 β 0, β 1 β i = Φ 1 Ĥ Φ 0 S Φ i Ĥ Φ i 153

Ω ) ) β i = Φ 1 (Ĥ Ω Φ 0 S Φ i (Ĥ Ω Φ i ( ) ( ) = Φ 1 Ĥ Φ 0 ΩS S Φ i Ĥ Φ i SΩ Ω W i = Φ i Ĥ Φ i SW i S β i Φ i H Ĥ Φ i = W i Φ i + Υ i i Υ i i β 0 = Φ 1 Ĥ Φ 0 S Φ 0 Ĥ Φ 0 = Φ 1 Υ 0 0 β 1 = Φ 0 Υ 1 1 [1] R. S. Mulliken, J. Am. Chem. Soc., 72, 600 (1950). [2] R. S. Mulliken, J. Am. Chem. Soc., 74, 811 (1952). [3] R. S. Mulliken, J. Phys. Chem., 56, 801 (1952). [4] R. S. Mulliken, Willis B. Person, Molecular Complexes, Wiley Interscience, (1969). [5] Noboru Mataga, Tanekazu Kubota, Molecular Interactions and Electronic Spectra, Marcel Dekker Inc., (1970). [6] R. S. Mulliken, J. Chem. Phys., 23, 1833 (1952). [7] P. O. Lowdin, Phys. Rev., 97, 1474 (1955). [8] A. E. Reed, L.. A. Curtis, F. Weinhold, Chem. Rev., 88, 899 (1988). 154

[9] F. Weinhold, Encyclopedia of Computational Chemistry Edited by von Schleyer, 3, 1792 (1998). [10] A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem, Phys., 83, 735 (1985). [11] S. Iwata, J.Tanaka, S. Nagakura, J. Am. Chem. Soc., 88, 894 (1966). [12] H. Matsuzawa, S. Iwata, Chem. Phys., 163, 297 (1992). [13] H. Matsuzawa, H. Yamashita, M. Ito, S. Iwata, Chem. Phys., 147, 77 (1990). [14] V. Horvth, A. Kovcs, I. Hargittai, J. Phy. Chem., 107, 1197 (2003). [15] S. Iwata, Phys. Chem. Phys. Chem., 14, 7787 (2012). [16] S. Karthikeyan, R. Sedlak, P. Hobza, J. Phys. Chem. A, 115, 9422 (2011). [17] H.-B. Yi, X.-Y. Li, S.-Y. Yang, X.-H. Duan, Int. J. Quant. Chem, 94, 23 (2003). [18] M.-S. Liao, Y. Lu, S. Scheiner, J. Comp. Chem., 24, 624 (2003). [19] T. Janowski, P. Pulay, Chem. Phys. Letters, 447, 27 (2007). 155