42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

Similar documents
03J_sources.key

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

36 th IChO : - 3 ( ) , G O O D L U C K final 1

log N ( t ) t 1/2 τ m 2τ m time t 4.1: λ decay rate λ = 1 τ m (4.8) A B b Γ = h τ m = hλ (4.9) A B + b (4.10) Q Q = M(B)+M(b) M(A) (4.11)

H1-H4

untitled

1/120 別表第 1(6 8 及び10 関係 ) 放射性物質の種類が明らかで かつ 一種類である場合の放射線業務従事者の呼吸する空気中の放射性物質の濃度限度等 添付 第一欄第二欄第三欄第四欄第五欄第六欄 放射性物質の種類 吸入摂取した 経口摂取した 放射線業 周辺監視 周辺監視 場合の実効線 場合

元素分析



Doc. No. MA035A-RC-D02-1 Rev Hitz B52 1

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

RAA-05(201604)MRA対応製品ver6

untitled

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

RN201602_cs5_0122.indd

rcnp01may-2

2_R_新技術説明会(佐々木)

IS(A3) 核データ表 ( 内部転換 オージェ電子 ) No.e1 By IsoShieldJP 番号 核種核種半減期エネルギー放出割合核種番号通番数値単位 (kev) (%) 核崩壊型 娘核種 MG H β-/ce K A

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, ( 03) N. P. A722, 117c ( 03) Proc. of NENS03 (to be

hv (%) (nm) 2

untitled

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

untitled

日本電子News vol.44, 2012



4 1 Ampère 4 2 Ampere 31

untitled

tnbp59-21_Web:P2/ky132379509610002944

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

物理化学I-第12回(13).ppt

PowerPoint プレゼンテーション


( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

X線分析の進歩36 別刷

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

JAJP

HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】

‡ç‡¢‡Ó‡Ü‡Á‡Õ04-07„”

prime number theorem

4_Laser.dvi


取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ

2008/02/18 08:40-10:10, 12:50-14:20 14:30-16:00, 16:10-17:40,

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

PowerPoint Presentation

コロイド化学と界面化学


000..\..

1 2 2 (Dielecrics) Maxwell ( ) D H

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

IA

1 223 KamLAND 2014 ( 26 ) KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR ν e ν µ ν τ ν 1 ν 2 ν MNS m 2 21

HITACHI 液晶プロジェクター CP-EX301NJ/CP-EW301NJ 取扱説明書 -詳細版- 【技術情報編】 日本語

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a


1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

untitled

Canvas-tr01(title).cv3

2 Zn Zn + MnO 2 () 2 O 2 2 H2 O + O 2 O 2 MnO 2 2 KClO 3 2 KCl + 3 O 2 O 3 or 3 O 2 2 O 3 N 2 () NH 4 NO 2 2 O + N 2 ( ) MnO HCl Mn O + CaCl(ClO

Agilent 7900 ICP-MS 1 1 Ed McCurdy 2 1 Agilent Technologies, Japan 2 Agilent Technologies, UK

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

Microsoft Word - 章末問題

CH 2 CH CH 2 CH CH 2 CH CH 2 CH 2 COONa CH 2 N CH 2 COONa O Co 2+ O CO CH 2 CH N 2 CH 2 CO 9 Change in Ionic Form of IDA resin with h ph CH 2 NH + COO

From Evans Application Notes

01-表紙.ai

apple ヲ0 09 apple ヲ apple0309apple076 56ヲ fl 0603apple6ヲ

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤®

リサイクルデータブック2016

untitled

Donald Carl J. Choi, β ( )

東京大学教養学部 放射線講義 スライドのご案内 ごらんのファイル以外にも 別学期の講義シリーズのファイルがあります 書籍 放射線を科学的に理解する 基礎からわかる 東大教養の講義 5 10 火曜5限 スタート!!

‚å™J‚å−w“LŁñ›Ä

Agilent AA ICP ICP-MS ICP-MS AA 55B AA LCD AA PC PC 240 AA / / AA 240FS/280FS AA AA FS 240Z/280Z AA GFAA AA Duo 1 PC AA 2 280FS AA

LHC-ATLAS Hà WWà lνlν A A A A A A

希少金属資源 -新たな段階に入った資源問題-

untitled

技術会議資料

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

Note.tex 2008/09/19( )

PDF

EOS and Collision Dynamics Energy of nuclear matter E(ρ, δ)/a = E(ρ, )/A + E sym (ρ)δ 2 δ = (ρ n ρ p )/ρ 1 6 E(ρ, ) (Symmetric matter ρ n = ρ p ) E sy

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m


δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

koji07-01.dvi

(Onsager )

Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

Z: Q: R: C: sin 6 5 ζ a, b

Transcription:

3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41

42 3 u = 931.494 13 (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = 938.272 (4) MeV/c 2 = 1.7 276 466 88 (13) u m n = 939.565 33 (4) MeV/c 2 = 1.8 664 915 78 (55) u m H = 938.782 98 (4) MeV/c 2 = 1.7 825 23 (55) u (3.5).1% m n m p = 1.293 331 8 (5) MeV/c 2 m n m H =.782 354 (2) MeV/c 2 (3.6) m e [1] m e =.51 998 92 (21) MeV/c 2 (3.7) 3.1.2 Z A Z M(A, Z) m n = M(1, ) m H = M(1, 1) M( 12 C) = M(12, 6) 1% binding energy Z N Zm H + Nm n B(A, Z) =Zm H + Nm n M(A, Z) (N = A Z ) (3.8) Z N B(A, Z)

3.1 43 Mass Excess A mass excess M(A, Z) =M(A, Z) Au (3.9) mass excess M(A, Z) = Zm H + Nm n B(A, Z) Au = B(A, Z)+Z (m H u)+n (m n u) (3.1) m H u =7.288 97 (5) MeV/c 2 m n u =8.71 32 (5) MeV/c 2 (3.11) mass excess m n m H > A =56 mass exces [2] 3.1 A =56 57 Z M(56,Z) B(56,Z) B/56 M(57,Z) B(57,Z) B/57 2 Ca -13.237 449.584 8.28-7.12 451.539 7.922 21 Sc -25.467 461.32 8.233-21.387 465.23 8.158 22 Ti -39.132 473.914 8.463-34.558 477.412 8.376 23 V -46.239 48.239 8.576-44.376 486.448 8.534 24 Cr -55.289 488.56 8.723-52.393 493.682 8.661 25 Mn -56.95 489.341 8.738-57.485 497.991 8.737 26 Fe -6.61 492.254 8.79-6.176 499.9 8.77 27 Co -56.35 486.95 8.695-59.34 498.282 8.742 28 Ni -53.9 483.988 8.643-56.75 494.234 8.671 29 Cu -38.61 467.97 8.355-47.35 484.682 8.53 3 Zn -25.728 454.251 8.112-32.686 469.281 8.233 31 Ga -4.741 432.482 7.723-15.91 451.713 7.925 MeV

44 3 3.2 Weizsäcker 3.2.1 [2,3] 1. B(A, Z) A 3.1 B(A, Z)/A 7.4 MeV 8.8 MeV 2. A 6 6 B(A, Z)/A 3.1 3. A Z B(A, Z) Z 3.2 4. 3. A A Z Z 3.2 5. Z = N 3.3 [ 4] 9. 8.5 B ( A,Z ) / A [ MeV ] 8. 7.5 7. 5 1 15 2 25 mass number A 3.1:

3.2 Weizsäcker 45 g.s. energy [ MeV ] g.s. energy [ MeV ] 4 35 3 25 2 15 1 5 35 3 25 2 15 1 5 A = 57 A = 56 21 22 23 24 25 26 27 28 29 3 atomic number 3.2: A =57 A =56 Z = N Stable Isotopes Z =2 Z =14 N =2 Z =2 N =2 Z =8 N =8 N =14 stable isotopes with Z = N = even 8 except Be 4 no stable isotopes for A = 5, 8 3 2 He : only stable for A > 1 above the Z = N line 3.3: Z 2

46 3 3.2.2 Weizsäcker mass formula [5] volume energy E 1 = b vol A (3.12) saturation property A A A C 2 = A(A 1)/2 A 2 surface energy σ R σ 4πR 2 E 2 =4πR 2 σ (3.13) 1/3 R = r A 1/3 (3.14) E 2 =4πr 2 σa 2/3 = b surf A 2/3 (3.15)

3.2 Weizsäcker 47 R 3 R 2 Coulomb Coulomb energy e Coulomb R Ze Coulomb E 3 = Z(Z 1) 2 ρ dr ρ dr r r ρ 4πR 3 3 = e (3.16) Z(Z 1)/2 Z r r R E 3 = Z(Z 1)e2 2 6 5 1 R = 3 e 2 Z(Z 1) 5 r A 1/3 b Coul Z 2 A 1/3 (3.17) Z(Z 1) Z 2 Coulomb symmetry energy Coulomb Coulomb ( ) N Z 2 ( ) A 2Z 2 (A 2Z) 2 E 4 = c A = c A = b sym N + Z A 2A (3.18) N/Z A Z = N N Z pairing energy Z N 2 H 6 Li 1 B 14 N δ(a) Z =, N= E 5 = (A) = Z + N = δ(a) Z =, N= (3.19)

48 3 4 3 proton pairing energy [ MeV ] 2 1 4 3 neutron 2 1 5 1 15 2 25 mass number A 3.4: 12/ A δ(a) = 12 A MeV (3.2) 3.4 [2] Weizsäcker B(A, Z) = b vol A b surf A 2/3 b Coul Z 2 A 1/3 b sym (A 2Z) 2 A Coulomb (A) (3.21) Green[6] MeV b vol =15.56, b surf =17.23, b Coul =.697, b sym =23.29 (3.22)

3.3 49 3.3 3.3.1 Weizsäcker Z Coulomb A Z B(A, Z) Z = (3.23) A= Z = A 2+ b CoulA 2/3 b sym (3.24) b Coul /b sym Z = N Coulomb Z Z = N A Z 3.5 β β-stability line 1 proton number Z 8 6 4 2 Stable Isotopes 2 4 6 8 1 12 14 16 neutron number N 3.5: (3.24)

5 3 3.6 [2] A 9 14 21 3.7 Coulomb 8MeV 3.3.2 [4] 287 27 A =1 A = 29 A =5 A =8 232 Th 234,235,238 U [4] 1) 235 U 238 U 2) 4 K 3) 3 H 7 Be 1 Be 14 C 22 Na 32 P 35 S 36 Cl 3.2 4 K 1.28 1 9 y β, EC 148 S m 7 1 15 y α 87 Rb 4.8 1 1 y β 152 Gd 1.1 1 14 y α 113 Cd 9 1 15 y β 176 Lu 3.6 1 1 y β 115 In 4.4 1 14 y β 174 Hf 2. 1 15 y α 123 Te 1.3 1 13 y EC 187 Re 5 1 1 y β 138 La 1.3 1 11 y β, EC 186 Os 2 1 15 y α 144 Nd 2.4 1 15 y α 19 Pt 6. 1 11 y α 147 S m 1.6 1 11 y α

3.3 51 9. 8.5 B ( A,Z ) / A [ MeV ] 8. 7.5 7. 5 1 15 2 25 mass number A 3.6: B ( A,Z ) / A [ MeV ] 16 volume energy 14 12 1 8 6 4 surface energy Coulomb energy symmetry energy 2 5 1 15 2 25 mass number A 3.7: Weizsäcker

52 3 1.5 1 8 3.3.3 shell effect Weizsäcker 3.6 A = 9, 14, 21 E(A, Z) =B(A, Z) B(A, Z) (3.25) 3.8 E E Z, N = 28, 5, 82 E N = 126

3.3 53 2 15 5 82 E [ MeV ] 1 5 28-5 5 1 proton number Z 2 82 E [ MeV ] 15 1 5 28 5 126-5 5 1 15 neutron number N 3.8: Weizsäcker

54 3 3.4 3 1. D.E. Groom et al., European Physical Journal C15 (2) 1, available on the Particle Data Group WWW page (URL http://pdg.lbl.gov ) 2. The 1995 Update to the Atomic Mass Evaluation, available on http://www.nndc.bnl.gov/nndcscr/masses/ 3. Table of Isotopes, Eighth Edition, R.B. Firestone, Ed. V.S. Shirley, (John Wiley and Sons, Inc., New York, 1996) 4. 21 5. C.F. von Weizsäcker, Z. Phys. 96 (1935) 431 H.A. Bethe, Rev. Mod. Phys. 8 (1936) 82 6. A.E.S. Green and D.F. Edwards, Phys. Rev. 91 (1953) 46; A.E.S. Green, Phys. Rev. 95 (1954) 15