<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Similar documents
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

情報通信工学2-ocw.dvi

Microsoft Word - 信号処理3.doc

QMI_09.dvi

QMI_10.dvi

スライド タイトルなし

1 s(t) ( ) f c : A cos(2πf c t + ϕ) (AM, Amplitude Modulation) (FM, Frequency Modulation) (PM, Phase Modulation) 2

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

85 4

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =


S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt


x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

keisoku01.dvi

SFGÇÃÉXÉyÉNÉgÉãå`.pdf


A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

³ÎΨÏÀ

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

Note.tex 2008/09/19( )

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B BB2D834A836F815B82D082C88C60202D B2E646F63>

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

DE-resume

CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA, HC-MCM, i

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

mugensho.dvi

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

2011de.dvi

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

高等学校学習指導要領

高等学校学習指導要領

untitled

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

I

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

Gmech08.dvi

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

sikepuri.dvi


c 2009 i

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

body.dvi

sp3.dvi

(n ) 1. Ungerboe TCM (trellis oded modulation) 3 [4] (i ) (ii) (iii).1 TV [,3]. MPEG PCM 1/10. 3 (B.B.) 1/ B.B. (i ) AC AMI (ii) ( ) (n ) (iii) NRZ (i

曲面のパラメタ表示と接線ベクトル

chap9.dvi

数学の基礎訓練I

構造と連続体の力学基礎

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

main.dvi

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

LLG-R8.Nisus.pdf

画像工学特論

newmain.dvi


Microsoft Word - 学士論文(表紙).doc

基礎数学I

1 I

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>


Korteweg-de Vries


(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

A

main.dvi

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

Untitled

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

Gmech08.dvi

The Physics of Atmospheres CAPTER :

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

meiji_resume_1.PDF

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C


Transcription:

通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです.

i 2 2 2 2012 5

ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5

iii 1 1 1.1... 1 1.2... 5 1.3... 8 1.4... 12 1.5... 21... 26 2 29 2.1... 29 2.2... 34 2.3 2... 38 2.4... 43 2.5... 47 2.6... 51... 57 3 60 3.1... 60 3.2... 64 3.3... 69 3.4... 71 3.5 SN... 73 3.6... 78... 80 4 82 4.1... 82 4.2 FM... 86 4.3 FM... 88

iv 4.4 FM... 93 4.5 FM SN... 97 4.6... 102 4.7... 105... 106 5 109 5.1... 109 5.2... 114 5.3... 120 5.4... 123 5.5... 125... 129 6 132 6.1... 132 6.2... 140 6.3... 144 6.4... 147 6.5... 150 6.6 M... 151 6.7... 159... 163 7 166 7.1 SN... 166 7.2... 172 7.3... 176 7.4... 181... 185 8 187 8.1... 187 8.2... 191 8.3... 195 8.4... 199

v 8.5... 209... 211 213 229 232 236... 28... 59... 81... 108... 130...... 164... 186... 212

1 1. 1.1 v(t) =v(t + n ), n =0, ± 1, ± 2, (1.1) (periodic waveform) (period) v(t) =A 0 + A n cos 2nπt + B n sin 2nπt (1.2) n=1 (Fourier series) A 0 (1.2) ( /2 /2) A 0 = 1 /2 /2 n=1 v(t) dt (1.3) v(t) 1 A n B n (1.2) cos(2πnt/) sin(2πnt/) 1 A n B n (n =1, 2 )

2 1 A n = 2 B n = 2 /2 /2 /2 /2 v(t)cos 2πnt v(t)sin 2πnt dt dt (1.4) A n B n (Fourier coefficient) v(t) v(t) =v( t) A 0 = 2 /2 v(t) dt 0 A n = 4 (1.5) /2 v(t)cos 2πnt dt, B n =0 0 v(t) v(t) = v( t) A 0 = A n =0 B n = 4 /2 v(t)sin 2πnt dt 0 (1.2) ( ) 2nπt v(t) =C 0 + C n cos + φ n n=1 (1.6) (1.7) (1.2) (1.7) C 0 = A 0, C n = A n2 + B 2 n (1.8) φ n = tan 1 B n A n f 0 =1/ C n nf 0 C n cos(2πnt/ + φ n ) φ n C n (amplitude spectrum) φ n (phase spectrum) (complex Fourier series) ( v(t) = V n exp j 2πnt ) (1.9) n= V n

V n = 1 /2 /2 1.1 3 ( v(t)exp j 2πnt ) dt (1.10) j j = 1 (1.9) (1.2) cos x = ejx + e jx, sin x = ejx e jx 2 2j A 0 = V 0 A n jb n 2 = V n, A n + jb n 2 = V n (1.11) (1.12) V n (1.7) C n V 0 = C 0 V n = C n 2 exp(jφ n), V n = C (1.13) n 2 exp( jφ n) V n exp(j2πnt/) V n V n = V n exp(jφ n ) (1.14) V n (frequency spectrum) v(t) (1.10) V n = V n, V n = V n (1.15) (1.10) v(t) V n v(t) V n nf 0 nf 0 nf 0 (1.15) V n = V n, φ n = φ n (1.16) V n ( )

4 1 V 0 = C 0, V n = V n = C n, n =1, 2, (1.17) 2 φ n ( ) ( /2 /2) v(t) (t 0 t 0 + ) (1.10) V n = 1 t0 + ( v(t)exp j 2πnt ) dt (1.18) t 0 v(t) (t 0 t 0 + ) V n v(t) ( ) 1.1 1.1 A τ (0 <τ<) 1.1 B n 0 A 0 A n (1.5) (0 τ/2) A 0 = 2 τ/2 Adt= Aτ (1.19) 0 A n = 4 τ/2 A cos 2πnt [ ] 2Aτ sin(nπτ/ ) dt = (1.20) 0 nπτ/ (1.8) } C 0 = A 0, C n = A n (1.21) φ n =0 v(t) = Aτ + 2Aτ [ ] sin(nπτ/ ) cos 2πnt nπτ/ n=1 (1.22)

1.2 5 (1.10) (1.12) (1.13) V n = Aτ [ sin(nπτ/ ) nπτ/ ], V 0 = Aτ (1.23) v(t) V n v(t) = Aτ [ ] ( sin(nπτ/ ) exp j 2πnt ) (1.24) nπτ/ n= (1.22) (1.24) ( ) ( ) 1.2 τ/ =1/4 V n 1.2 (τ/ =1/4) 1.2 1.1 S a (x) = sin x x (1.25) (sampling function) 1.3 S a (0) = 1, S a (±nπ) =0, n =1, 2, (1.26) x

6 1 1.3 S a (x) (Dirac s delta function) 1.4 ε 1/ε 1 0 { 0 x 0 δ(x) = x =0 (1.27) δ(x) dx = 1 (1.28) σ 2 0 ) 1 δ(x) = lim exp ( x2 σ 0 2πσ 2σ 2 (1.29) k δ(x) = lim k π S a(kx) (1.30) 1.4

1.2 7 a δ(x a) x = a f(x) f(x)δ(x a) dx = f(a) (1.31) 1.5 (unit step function) 1.5 1.2 1.1 Aτ = I τ 0 1.6 I (intensity) 1.6 1.1 τ 0 ( ) sin(nπτ/ ) nπτ = S a 1 (1.32) nπτ/ v(t) = I + 2I cos 2πnt n=1 (1.33)

8 1 v(t) = I n= ( exp j 2πnt ) (1.34) 1.3 (linear system), (transfer function) V n exp(j2πf n t), n =0, ± 1, ± 2, (1.35) H(f n )= H(f n ) exp[jθ(f n )] (1.36) f n = n/ = nf 0 ( f 0 ) H(f n )V n exp(j2πf n t) (1.37) v i (t) = V n exp(j2πf n t) (1.38) n= v o (t) = H(f n )V n exp(j2πf n t) (1.39) n=

v o (t) =H(0)C 0 + 1.3 9 H(f n ) C n cos[2πf n t + φ n + θ(f n )] (1.40) n=1, (1.35) V n exp(j2πf n t)+v n exp( j2πf n t) =2Re[V n exp(j2πf n t)] (1.41) H(f n )V n exp(j2πf n t)+h( f n )V n exp( j2πf n t) (1.42) (1.42), H(f n )=H ( f n ) (1.43) H(f n ) = H( f n ), θ(f n )= θ( f n ) (1.44) H(f n ) θ(f n ) 1.7 (a) RC (RC low-pass filter) (b) RC (RC high-pass filter) f V exp (j2πft) ( f = n/ ) ( ) H(f) = 1, f 1 = 1 1+jf/f 1 2πRC (1.45) 1.7 RC

10 1 f 1 H(f) H(0) 3[dB] (high-frequency cutoff) ( ) H(f) = 1 1 jf 2 /f, f 2 = 1 2πRC (1.46) f 2 H(f) H(± ) 3[dB] (low-frequency cutoff) H(f) 1.8 ( ) v(t) 1 P = 1 /2 /2 [v(t)] 2 dt (1.47) 1[Ω] P (normalized power) v(t) P v(t) (1.7) P = C 2 2 C n 0 + (1.48) 2 n=1 (1.40) H(f) P o = H 2 (0)C 2 0 + 1 H(f n ) 2 2 C n (1.49) 2 n=1 v(t) (1.38) (1.47) 0 V 2 0 1.8 RC

1.3 11 V n exp(j2πf n t) V n exp( j2πf n t), n = ±1, ±2, (1.50) V n = V n P = V n 2 = V 2 0 +2 V n 2 (1.51) n= n=1 V n 2 f n = nf 0 = n/ (power spectrum) P o = H(f n ) 2 V n 2 n= = H 2 (0)V 2 0 +2 H(f n ) 2 V n 2 (1.52) n=1 1.3 v o (t) = t t v i (t) dt (1.53) v i (t) =V exp(j2πft) (1.54) v o (t) = t t V exp(j2πft) dt [ ] 1 exp( j2πf) = V exp(j2πft) (1.55) j2πf H(f) = v o(t) v i (t) = 1 exp( j2πf) j2πf ( ) sin πf = exp( jπf) πf = S a (πf)exp( jπf) (1.56)

12 1 1.4 1/ 0 v(t) 1/ = Δf ( v(t) = V n exp j 2πnt ) = n= n= ( ) Vn exp(j2πnδft)δf (1.57) Δf Δf 0 nδf f v(t) v(t) = V (f) V (f) = V (f)exp(j2πft) df (1.58) V n lim Δf 0 Δf (frequency spectral density) V n = 1 /2 ( v(t)exp j 2πnt ) dt = Δf /2 1/2Δf 1/2Δf (1.59) v(t) exp( j2πnδft) dt (1.60) Δf 0 V (f) V (f) = v(t) exp( j2πft) dt (1.61) (1.58) (1.61) (Fourier transform pair) V (f) v(t) (Fourier transform) v(t) V (f) (inverse Fourier transform)

60 3 (FDM) (AM), (SN ) 3.1 (baseband signal) (modulating signal) (carrier) (modulated wave) f f m f m f m =3.4 [khz] f m =4.5 [MHz] f c f m (double sideband ; DSB) m(t) cos 2πf c t DSB 1) v DSB (t) =m(t)cos2πf c t (3.1) 1) DSB DSB ( ) DSB DSB AM FM

3.1 61 m(t) M(f) DSB V DSB (f) = 1 2 [M(f f c)+m(f + f c )] (3.2) (3.2) DSB DSB 3.1 DSB f c ( ±f c ) (upper sideband; USB) (lower sideband; LSB) DSB 2 2f m DSB DSB (double sideband suppressed carrier; DSB-SC) 3.1 DSB DSB 3.2 AM (DSB ) AM 2 DSB-SC (balanced modulator)

62 3 3.2 DSB (demodulation) (detection) DSB DSB (synchronous detection) (coherent detection) DSB (product detector) DSB v DSB (t) =m(t)cos2πf c t (3.3) v DSB (t) ( ) c(t) =cos2πf c t (3.4) v DSB (t)c(t) =m(t)cos 2 2πf c t = 1 2 m(t)+ 1 2 m(t)cos4πf ct (3.5) V DSB (f) C(f) = 1 2 M(f)+1 4 [M(f 2f c)+m(f +2f c )] (3.6) (3.6) 1 2 ±2f c f m 3.3 DSB (3.3) DSB Δf Δφ

3.1 63 3.3 DSB c(t) =cos[2π(f c + Δf)t + Δφ] (3.7) v o (t) = 1 m(t)cos(2πδft + Δφ) (3.8) 2 Δf (offset) Δφ Δf Δφ (3.8) Δf =0 v o (t) = 1 m(t)cosδφ (3.9) 2 cos Δφ Δφ = nπ/2(n = ±1, 3, 5, ) DSB DSB ( 3.1 ) (pilot carrier) DSB DSB FM ( )

132 6 5 PCM ( ) ( ) (ASK) (FSK) (PSK) 2 6.1 ( ) (amplitude shift keying ; ASK) 2 0 (on-off keying ; OOK) ( 1/f c ) OOK } s 1 (t) =A cos 2πf c t, 1, s 0 (t) =0, 0 2 t (6.1) 2 (6.1) (raised cosine) ( 1.1 )

6.1 133 6.1 OOK 6.1 OOK 1 0 (mark) (spece) OOK (6.1) ( 1) ( 0) OOK (bit error probability) OOK (noncoherent detection) 6.2 3.2 AM ( ) 7 ( ) 6.2 OOK

134 6 n(t) =x(t)cos2πf c t y(t) sin 2πf c t (6.2) x(t) y(t) 0 s 1 (t)+n(t) =[A + x(t)] cos 2πf c t y(t) sin 2πf c t (6.3) R 1 (t) = [A + x(t)] 2 + y 2 (t) (6.4) R 0 (t) = x 2 (t)+y 2 (t) (6.5) - p 1 (R) = R [ N exp R2 + A 2 ] ( ) AR I 0 (6.6) 2N N N N = x 2 (t) =y 2 (t) (6.7) p 0 (R) = R ( ) N exp R2 2N (6.8) t = s R } R( s ) >R (6.9) R( s ) <R

6.1 135 1( ) 0( ) (incorrect dismissal) P e1 = = R 0 R 0 p 1 (R) dr R N exp [ R2 + A 2 2N ] ( ) AR I 0 dr (6.10) N Q Q(x, y) = exp ( t2 + x 2 ) I 0 (xt)tdt (6.11) 2 y P e1 =1 Q ( 2γ, α ) (6.12) γ = A2 2N, α = R N (6.13) γ SN ( ) A A 2 /2 N γ SN CN ( ) α 0( ) 1 ( ) (false alarm) ) ) R P e0 = p 0 (R) dr = ( R N exp R2 dr =exp ( α2 (6.14) 2N 2 R P e1 P e0 6.3 50 % ( 1/2) 2 P e = 1 2 (P e1 + P e0 )

2012 Printed in Japan ISBN978-4-627-72662-8