15_15KEK

Similar documents
1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

Kaluza-Klein(KK) SO(11) KK 1 2 1

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

Note.tex 2008/09/19( )

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

0406_total.pdf

inflation.key

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

橡超弦理論はブラックホールの謎を解けるか?

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.


LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

CMB and DM (Cosmic Microwave Background and Dark Matter) ~ ~

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

1 12 CP 12.1 SU(2) U(1) U(1) W ±,Z [ ] [ ] [ ] u c t d s b [ ] [ ] [ ] ν e ν µ ν τ e µ τ (12.1a) (12.1b) u d u d +W u s +W s u (udd) (Λ = uds)

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

陦ィ邏・2

2000年度『数学展望 I』講義録

untitled

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

LEPS

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3


( ) ( ) 1729 (, 2016:17) = = (1) 1 1

Mott散乱によるParity対称性の破れを検証

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b)

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

,,.,,.,.,,,.,.,.,..,.,,.,.,,..,, CMB

DVIOUT-fujin

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

PowerPoint Presentation

36 th IChO : - 3 ( ) , G O O D L U C K final 1

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

Jacobi, Stieltjes, Gauss : :

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)


SUSY DWs


φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1


C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

Transcription:

25, Nov. 24th

- - T. Hyodo, Int. J. Mod. Phys. A 28, 3345 (23) T. Hyodo, Phys. ev. Lett., 322 (23) - - - Λ(45) Y. Kamiya, T. Hyodo, arxiv:59.46 [hep-ph] K or N 2

イントロダクション ハドロンの構造とエキゾチック状態 ハドロンの分類 観測されているハドロン PDG25 http://pdg.lbl.gov/ JP JP π ω cc π φ π π φ π ω ω π sj ψ cb ub ψ sj χ χ sj /ψ χ χ χ ψ ψ φ π π ω φ π ψ χ χ χ χ χ χ χ バリオン~5種類 メソン~2種類 ~ 35種類全てが単一のQCDラグランジアンから出てくる qqq/qq で記述される量子数のみ 自明ではない 3

gions are shown in Figs. (a) and (b), respechere M½ðnSÞŠ max is the maximum invariant the two ðnsþ combinations. This is used to ðnsþ þ and ðnsþ events for visualization o (Belle) horizontal bands are evident in the ð2sþ ear 2:6 GeV2=c 4 and 3:3 GeV 2 =c 4, where rtion Zb(6), from straightzb(65) lines is due to interference with termediate Υ(5S) > states, π + as demonstrated below. Onenal invariant mass projections for events in Zb the 4 (LHCb) Pc(445), Pc(438) 2 Λb > K- + Pc qqq/qq Υ(nS)(bb ) + π (ud /dū) 6 A. Bondar, et al., Phys. ev. Lett. 8, 22 (22) (a) (b).2.4.6.8 LHCb. Aaij, et al., Phys. ev. Lett. 5, 72 (25) (a) J/ψ(cc ) + p(uud) data total fit background P c (445) P c (438) Λ(45) Λ(52) Λ(6) Λ(67) Λ(69) Λ(8) Λ(8) Λ(82) Λ(83) Λ(89) Λ(2) Λ(2) 8.2.4.6.8 Events/(5 MeV) 8 7 8 6 6 5 4 4 2 3 (b) LHCb 2.58.62.66.7.74 4 4.2 4.4 4.6 4.8 5 m J/ψp [GeV] FIG. 3 (color online). Fit projections for (a) m Kp and (b) m J=ψp for the reduced Λ model with two P þ c states (see Table I). The shown as solid (black) squares, while the solid (red) points show the perimental results of the fit. The data solid (points (red) histogram with showserror the back distribution. The (blue) open squares with the shaded histogram represent the P c ð445þ þ state, and the shaded histogram topp 4 Dalitz plots for ð2sþ þ events in the (a) ð2sþ 2 8 6 4 2..2.3.4.5.6.7.8 (c) π.4.45.5.55.6.65.7.75 2 FIG. 2. (e) π π Comparison of fit resul

qq B M QCD qqq - qqq > 5

イントロダクション ハドロン物理における共鳴状態 強い相互作用で不安定な状態 励起ハドロンの性質 PDG25 http://pdg.lbl.gov/ JP JP π ω cc π φ π π φ π ω ω π sj ψ cb ub ψ sj χ χ sj /ψ χ χ χ ψ ψ φ π π ω φ π ψ χ χ χ χ χ χ χ - 強い相互作用で安定 不安定 - 励起状態のほとんどが不安定 ハドロン散乱の共鳴状態 6

2.5 -.8.8.6 2.4 3.2 4 4.8-2.5 ) - (P) - E> - - (P ) K N V P r 2) - (P+Q) V Q - Q EQ<, EP> - - (P ) P r 7

- G. Gamow, Z. Phys. 5, 24 (928) Zur Quantentheorie des Atomkernes. Von G. Gamow~ z. Zt. in GSttingen. Mit 5 Abbildungen. (Eingegangen am 2. August 928.) Um diese Schwierigkeit zu ilberwinden, miissen wir annehmen, dal] die Schwingungen ged~mpft sin(t, und E komplex setzen: we E o die gewshnliche Energie ist und 9[ das D~mpfungsdekrement (Zer~allskonstante). ])ann sehen wir aber aus den elationen (2 a) und (2 b), - h i = Z dr (r) 2! bi-orthogonal basis Gamow vector N. Hokkyo, Prog. Theor. Phys. 33, 6 (965) T. Berggren, Nucl. Phys. A 9, 265 (968) Z i = i, h i = dr[ (r)] 2 < hz - <r 2 > > 8

X S. Weinberg, Phys. ev. 37, B672 (965) or Z 9

s ( typ) <X< S. Weinberg, Phys. ev. 37, B672 (965); T. Hyodo, Int. J. Mod. Phys. A 28, 3345 (23) 2X a = +X + O typ X, r e = X a, re = (2μB) -/2 typ : + O typ - NN a~ re < X ~ -

- QFT D.B. Kaplan, Nucl. Phys. B494, 47 (997) E. Braaten, M. Kusunoki, D. Zhang, Annals Phys. 323, 77 (28) Z apple H free = dr 2M r r + 2m r r + rb 2M rb + B B, Z i H int = dr hg B + B + v B B g + g B + v - Λ ~ /typ - p Λ

H free B i = B i, (H free + H int ) B i = B B i - B> + Z h B B i =, = B ih B + - H free p i = p2 2µ p i =Z + X, Z h B B i 2, X dp (2 ) 3 p ih p Z dp h p B i 2 (2 ) 3 Z, X: > 2

ΨΦ f(e) = µ 2 [v(e)] G(E) v(e) =v + g2 E, G(E) = 2 2 Z = v + p 2 dp E p 2 /(2µ)+i + X v(e) G(E) T. Sekihara, T. Hyodo, D. Jido, PTEP25, 63D4 (25) T. Hyodo, arxiv:5.87 [hep-ph] g g + v + g g X = {+G 2 ( B)v ( B)[G ( B)] } / X a = f(e = ) = 2X +X + O typ X < (B, a) typ 3

H free = H int = Z Z apple dr 2M r r + 2m r r, apple dr g B + B + v + v( t + ), H = H free + H free + H int + H int H QB i = E QB QB i, E QB 2 C a = ( 2X +X + O typ + s µ 3 µ 3 O l ν 3 ), = B p 2µEQB, l μ μ p 2µ X < (EQB, a) (typ, l) 4

> Z X Z + X =, Z,X 2 C Z X Z X Z X + Z 2 - Z + X =, Z, X 2 [, ] Z + X, X, U Z + X 2 - U= c.f. V. Baru, et al., Phys. Lett. B 586, 53 (24) F. Aceti, et al., Eur. Phys. J. A 5, 57 (24) Z.H. Guo, J.A. Oller, arxiv:58.64 [hep-ph] 5

Λ(45) X < (EQB, a) a = ( 2X +X + O typ + s µ 3 µ 3 O l 3 ), = p 2µEQB, l p 2µ - Λ(45) K N Y. Ikeda, T. Hyodo, W. Weise, PLB 76, 63 (2); NPA 88 98 (22), - EQB = - -26i MeV > ~ 2 fm > typ..2, l 3..6 πσ ef. E QB (MeV) a (fm) X KN X KN U r e /a [43] i26.39 i.85.2+i...5.2 [44] 4 i 8.8 i.92.6+i..6..7 [45] 3 i2.3 i.85.9 i.2.9..2 [46] 2 i.2 i.47.6+i..6..7 [46] 3 i2.52 i.85.+i.5.8.6.4 Λ(45) K N < 6

a = S. Weinberg, Phys. ev. 37, B672 (965) ( 2X +X + O typ + s µ 3 µ 3 O Λ(45) l 3 ), = p 2µEQB, l p 2µ K N Y. Kamiya, T. Hyodo, arxiv:59.46 [hep-ph] K N 7