(time series) ( 225 ) / / p.2/66

Similar documents
(a) (b) (c) 4. (a) (b) (c) p.2/27


Tel : , Fax : URL : tohru / / p.1/12

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

201711grade1ouyou.pdf

mugensho.dvi

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

R¤Çʬ¤«¤ëÎÏ³Ø·Ï - ¡Áʬ´ô¤ÎÍͻҤò²Ä»ë²½¤·¤Æ¤ß¤ë¡Á

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

ver.1 / c /(13)

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n


(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

Z: Q: R: C: sin 6 5 ζ a, b


9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

DVIOUT

Fr


I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

sakigake1.dvi

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

pdf

phs.dvi

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

2

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

v er.1/ c /(21)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

II 1 II 2012 II Gauss-Bonnet II

1 c Koichi Suga, ISBN

ohp_06nov_tohoku.dvi

II 2 II

Note.tex 2008/09/19( )

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x ( ) x dx = ax


応力とひずみ.ppt


1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3


u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

TOP URL 1

TOP URL 1

meiji_resume_1.PDF

December 28, 2018


( ) Loewner SLE 13 February

73

ohpr.dvi

K E N Z OU

Fubini

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

( ) ( )

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

08-Note2-web

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

i 18 2H 2 + O 2 2H 2 + ( ) 3K

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

untitled

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.


: , 2.0, 3.0, 2.0, (%) ( 2.

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

曲面のパラメタ表示と接線ベクトル

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

A

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f


1 Tokyo Daily Rainfall (mm) Days (mm)

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

untitled

Transcription:

338 857 255 Tel : 48 858 3577, Fax : 48 858 3716 Email : tohru@ics.saitama-u.ac.jp URL : http://www.nls.ics.saitama-u.ac.jp/ tohru / / p.1/66

(time series) ( 225 ) / / p.2/66

/ / p.3/66

?? / / p.3/66

1.9.8.7.6???.5.4.3.2.1 5 1 15 2 25 3 35 4 45 5 1 t.9.8.7.6???.5.4.3.2.1 5 1 15 2 25 3 35 4 45 5 t / / p.4/66

1.9.8.7.6???.5.4.3.2.1 5 1 15 2 25 3 35 4 45 5 1 t.9.8.7.6???.5.4.3.2.1 5 1 15 2 25 3 35 4 45 5 1. t / / p.4/66

1.9.8.7.6???.5.4.3.2.1 5 1 15 2 25 3 35 4 45 5 1 t.9.8.7.6???.5.4.3.2.1 5 1 15 2 25 3 35 4 45 5 1. 2. t / / p.4/66

1 2 1 2 1 1 1 1 Power 1 Power 1 1 1 1 1 1 2.5.1.15.2.25.3.35.4.45.5 Frequency 1 2.5.1.15.2.25.3.35.4.45.5 Frequency, / / p.5/66

x(n) x(3) x(2) x(1) n / / p.6/66

x(n) x(3) x(2) x(1) n x(n) x(n + 1) / / p.6/66

x(n) x(3) x(2) x(1) n / / p.7/66

x(n) x(3) x(n + 1) x(2) x(1) (x(1), x(2)) n x(n) / / p.7/66

x(n) x(3) x(n + 1) (x(2), x(3)) x(2) x(1) (x(1), x(2)) n x(n) / / p.7/66

x(n) x(3) x(n + 1) (x(2), x(3)) x(2) x(1) (x(1), x(2)) n x(n) / / p.7/66

x(n) x(3) x(n + 1) (x(2), x(3)) x(2) x(1) (x(1), x(2)) n x(n) / / p.7/66

x(n) x(3) x(n + 1) (x(2), x(3)) x(2) x(1) (x(1), x(2)) n x(n) x(n) x(n + 1) / / p.7/66

1 1.9.9.8.8.7.7.6.6 y(t+1).5 y(t+1).5.4.4.3.3.2.2.1.1.1.2.3.4.5.6.7.8.9 1.1.2.3.4.5.6.7.8.9 1 / / p.8/66

1.9.8.7.6???.5.4.3.2.1 5 1 15 2 25 3 35 4 45 5 1 t.9.8.7.6???.5.4.3.2.1 5 1 15 2 25 3 35 4 45 5 t / / p.9/66

1.9.8.7.6???.5.4.3.2.1 5 1 15 2 25 3 35 4 45 5 1 t.9.8.7.6???.5.4.3.2.1 5 1 15 2 25 3 35 4 45 5 t x(n + 1) = 4x(n)(1 x(n)) / / p.9/66

1 1.9.9.8.8.7.7???.6.5.4 y(t+1).6.5.4.3.3.2.2.1.1 5 1 15 2 25 3 35 4 45 5 1 t.1.2.3.4.5.6.7.8.9 1 1.9.9.8.8.7.7.6.6???.5.4 y(t+1).5.4.3.3.2.2.1.1 5 1 15 2 25 3 35 4 45 5 t.1.2.3.4.5.6.7.8.9 1 x(n + 1) = 4x(n)(1 x(n)) / / p.9/66

Poincaré Hadamard Kalman Lorenz Rössler Li-Yorke / / p.1/66

Poincaré Hadamard Kalman Lorenz Rössler Li-Yorke / / p.1/66

Poincaré Hadamard Kalman Lorenz Rössler Li-Yorke / / p.1/66

Poincaré Hadamard Kalman Lorenz Rössler Li-Yorke? / / p.1/66

x(n + 1) = 4x(n)(1 x(n)) 1. 1 2. 3. 2 / / p.11/66

1. 2. x(n + 1) = fµ(x(n)), x(n) R d, n Z (difference equation) (ordinary differential equation) (delay differential equation) (partial differential equation) x(n + 1) = f(x(n)) ẋ(t) = f(x(t)) ẋ(t) = f(x(t), x(t τ)) (autonomous system) ẋ(t) = f(x(t)) (non-autonomous system) ẋ(t) = f(x(t), t) (Input Output System) ẋ(t) = f(x(t), u(t)) / / p.12/66

1. x(n + 1) = fµ(x(n)), x(n) R d, n Z x() d x(n) 2. (a) (fixed point) (b) (limit cycle) (c) (torus) (d) (strange attractor) / / p.13/66

k R k /Z k R/Z (k 2) 1 k d λ i < (i=1,..., d) λ 1 = λ i < (i=2,...,d) λ i = (i=1,..., k) λ i < (i=k+1,.., d) λ i > (i=1,.., m 1) λ m = λ i < (i=m+1,.., d) / / p.14/66

1. (Orbital Instability) 2. (Long-term unpredictability and short-term predictability) 3. (Self-similarity) 4. (Non-periodicity) 5. (Boundedness) / / p.15/66

/ / p.16/66

= / / p.16/66

= / / p.16/66

= / / p.16/66

= ( ) / / p.16/66

1. 2. ( ) 3. 4. (a) (b) (c) (d) / / p.17/66

y(t + 1) y(t + 2) KS / / p.18/66

x(n + 1) = fµ(x(n)) + η(n) y(n) = g(x(n)) + ξ(n) x(n) : n f : k µ : η(n) : ξ(n) : g : y(n) : n y(n) f? / / p.19/66

x(n + 1) = fµ(x(n)) + η(n) y(n) = g(x(n)) + ξ(n) x(n) : n f : k µ : η(n) : ξ(n) : g : y(n) : n YES! y(n) f? / / p.19/66

v(t) = {, d dt, dy2 (t),..., dm dt 2 dt m (Packard et al.,198) } / / p.2/66

v(t) = {, d dt, dy2 (t),..., dm dt 2 dt m (Packard et al.,198) } : (O. Rössler, 1976) dx = y z dt dy = x + ay dt dz = bx cz + xz dt (y, dy/dt) / / p.2/66

4 35 3 25 z(t) 2 15 1 5 1 5 5 1 15 1 5 5 x(t) 1 15 / / p.21/66

8 z(t) 4 35 3 25 2 15 1 6 4 2 2 4 5 6 1 5 5 1 15 1 5 5 x(t) 1 15 8 1 12 5 1 15 2 25 3 35 4 t / / p.21/66

8 z(t) 4 35 3 25 2 15 1 6 4 2 2 4 5 6 1 5 5 1 15 1 5 5 x(t) 1 15 8 1 12 5 1 15 2 25 3 35 4 t 8 6 4 2 2 4 6 8 1 12 8 6 4 2 2 4 6 8 1 12 x(t) / / p.21/66

8 z(t) 4 35 3 25 2 15 1 6 4 2 2 4 5 6 1 5 5 1 15 1 5 5 x(t) 1 15 8 1 12 5 1 15 2 25 3 35 4 t 8 1 6 8 4 6 2 4 2 2 dy/dt 4 2 6 4 8 6 1 8 12 8 6 4 2 2 4 6 8 1 12 x(t) 1 12 1 8 6 4 2 2 4 6 8 / / p.21/66

8 z(t) 4 35 3 25 2 15 1 6 4 2 2 4 5 6 1 5 5 1 15 1 5 5 x(t) 1 15 8 1 12 5 1 15 2 25 3 35 4 t 8 1 6 8 4 6 2 4 2 2 dy/dt 4 2 6 4 8 6 1 8 12 8 6 4 2 2 4 6 8 1 12 x(t) 1 12 1 8 6 4 2 2 4 6 8 : = / / p.21/66

(Takens, 1981; Packard et al.,198) v(t) = {, y(t + τ), y(t + 2τ),...,y(t + (m 1)τ)} y(t + 2τ) y(3) y(2) y(1) t 1. v(1) v(3) v(2) y(t + τ) 2. τ / / p.22/66

v(t) = {, y(t + τ), y(t + 2τ),...,y(t + (m 1)τ)} : (O. Rössler, 1976) 8 6 4 2 2 4 6 8 1 12 5 1 15 2 25 3 35 4 t 4 35 3 12 25 1 8 z(t) 2 6 15 1 5 1 5 5 1 15 1 5 5 x(t) 1 15 x(t+2τ) 4 2 2 4 6 8 8 6 4 2 2 4 6 8 1 12 x(τ) 1 1 2 x(t+τ) / / p.23/66

(Takens, 1981) d M C 1 f : M M C 1 g : M R 1 m = 2d + 1 V : M R m V(x) = (g(x), g( f(x)), g( f 2 (x)),...,g( f m 1 (x))) =1 1& m = k + 1 ( ) M A m > 2d m > 2D Embedology (Sauer et al.,1991) m > D 2 (Ding et al, 1994) / / p.24/66

(Whitney, 1936) A d A R 2d+1 ( embedding ) C 1 C 1 F 1 1(one-to-one)+ (immersion)) = A F(A) / / p.25/66

1 1 A g 1 1 1 1 / / p.26/66

A R 1 y 1 (t) / / p.27/66

A R 2 y 2 y 2 S y 1 y 1 / / p.28/66

A R 3 y 3 y 2 y 3 y 2 S y 1 y 1 / / p.29/66

R 3 S S / / p.3/66

R m d 1 d 2 D I = d 1 + d 2 m D I D I < D I < m > d 1 + d 2 d 1 = d 2 = d m > 2d / / p.31/66

(Sauer et al.,1991) A R k d m > 2d R k R m C 1 g = (g 1, g 2,...,g m ) R m / / p.32/66

(Sauer et al.,1991) A R k d m > 2d R k R m C 1 g = (g 1, g 2,...,g m ) R m / / p.32/66

(Sauer et al.,1991) A R k D m m > 2D R k R m C 1 1. A 2. A / / p.33/66

(Takens, 1981) d M C 1 f : M M C 1 g : M R 1 m = 2d + 1 V : M R m V(x) = (g(x), g( f(x)), g( f 2 (x)),...,g( f m 1 (x))) / / p.34/66

(Sauer et al.,1991) Φ R k U A U A D m > 2D τ> A pτ(3 p m) τ 2τ U C 1 V(x) = (g(x), g(φ τ (x)), g(φ 2τ (x)),...,g(φ (m 1)τ (x))) 1. A 1 1 2. A / / p.35/66

(Sauer et al.,1991) f R k U A U A D m > 2D p m p p A p p/2 Df p U C 1 g 1. A V(x) = (g(x), g( f(x)), g( f 2 (x)),...,g( f m 1 (x))) 2. A / / p.36/66

R n S ( ) D D = lim ɛ log N(ɛ) log 1 ɛ N(ɛ) S ɛ n [, 1] ( ) n 1 ɛ = N(ɛ) = 3 n D = 1 3 ( ) n 1 ɛ = N(ɛ) = 2 n D = log 2 3 log 3 =.6392... / / p.37/66

x(n + 1) = fµ(x(n)) + η(n) y(n) = g(x(n)) + ξ(n) x f x V V F = V f V 1 v F v f F / / p.38/66

: dx dt dy dt dz dt = σx + σy = xz + rx y = xy bz 1. 2. 3. σ = 1, r = 28, b = 8/3 / / p.39/66

1 5 4 z(t) 3 2 2 15 1 1 5 3 2 1 1 2 3 2 15 1 5 x(t) 5 1 15 2 5 1 15 2 1 2 3 4 5 6 7 8 9 1 1 x(t) / / p.4/66

2 1 1 2 2 1 1 2 2 15 1 5 5 1 15 2 y(t+1) y(t+2) 2 1 1 2 2 1 1 2 2 15 1 5 5 1 15 2 y(t+4) y(t+8) 2 1 1 2 2 1 1 2 2 15 1 5 5 1 15 2 y(t+1) y(t+2) 2 1 1 2 2 1 1 2 2 15 1 5 5 1 15 2 y(t+2) y(t+4) 2 1 1 2 2 1 1 2 2 15 1 5 5 1 15 2 y(t+1) y(t+2) 2 1 1 2 2 1 1 2 2 15 1 5 5 1 15 2 y(t+4) y(t+8) 2 1 1 2 2 1 1 2 2 15 1 5 5 1 15 2 y(t+1) y(t+2) 2 1 1 2 2 1 1 2 2 15 1 5 5 1 15 2 y(t+2) y(t+4) 2 1 1 2 2 1 1 2 2 15 1 5 5 1 15 2 y(t+1) y(t+2) 2 1 1 2 2 1 1 2 2 15 1 5 5 1 15 2 y(t+4) y(t+8) 2 1 1 2 2 1 1 2 2 15 1 5 5 1 15 2 y(t+1) y(t+2) 2 1 1 2 2 1 1 2 2 15 1 5 5 1 15 2 y(t+2) y(t+4) / / p.41/66

2 1 1 2 2 1 1 2 2 15 1 5 5 1 15 2 y(t+1) y(t+2) 2 1 1 2 2 1 1 2 2 15 1 5 5 1 15 2 y(t+4) y(t+8) 2 1 1 2 2 1 1 2 2 15 1 5 5 1 15 2 y(t+1) y(t+2) 2 1 1 2 2 1 1 2 2 15 1 5 5 1 15 2 y(t+2) y(t+4) 2 1 1 2 2 1 1 2 2 15 1 5 5 1 15 2 y(t+1) y(t+2) 2 1 1 2 2 1 1 2 2 15 1 5 5 1 15 2 y(t+4) y(t+8) 2 1 1 2 2 1 1 2 2 15 1 5 5 1 15 2 y(t+1) y(t+2) 2 1 1 2 2 1 1 2 2 15 1 5 5 1 15 2 y(t+2) y(t+4) 2 1 1 2 2 1 1 2 2 15 1 5 5 1 15 2 y(t+1) y(t+2) 2 1 1 2 2 1 1 2 2 15 1 5 5 1 15 2 y(t+4) y(t+8) 2 1 1 2 2 1 1 2 2 15 1 5 5 1 15 2 y(t+1) y(t+2) 2 1 1 2 2 1 1 2 2 15 1 5 5 1 15 2 y(t+2) y(t+4) / / p.42/66

1.5 x 14 1.5.5 1 1.5 2 2.5 5 1 15 2 25 3 t 48[kHz] 12[bits] 1 / / p.43/66

x 1 4 x 1 4 x 1 4 2 2 1.5 2 1.5 1.5 1 1 1.5.5.5 y(t+2).5 y(t+1).5 y(t+22).5 1 1.5 1 1 2 1.5 1.5 2.5 3 2 2 x 1 4 2 1 y(t+1) 1 2 3 2 1 1 x 1 4 2 2.5 4 2 x 1 4 y(t+5) 2 3 2 1 1 2 x 1 4 2.5 4 2 x 1 4 y(t+11) 2 3 2 1 1 2 x 1 4 y(t+3) x 1 4 2 1.5 1.5.5 1 1.5 y(t+4) x 1 4 2 1.5 1.5.5 1 1.5 x 3 (t) x 1 4 1.5 1.5.5 1 1.5 2 1.5 1.5 2 2 x 1 4 2.5 4 2 x 1 4 y(t+15) 2 3 2 1 1 2 x 1 4 2.5 4 2 x 1 4 y(t+2) 2 3 2 1 1 2 x 1 4 x 2 (t).5 1 1.5 2 2 1 x 1 (t) 1 2 x 1 4 / / p.44/66

/ / p.45/66

/ / p.46/66

Orbital instability ɛ(t) = ɛ()e λt ɛ() ɛ() : λ : / / p.47/66

x(n + 1) = 4x(n)(1 x(n)) x() =.1.1 + 1 8 1.9.8.7.6 x(t).5.4.3.2.1 5 1 15 2 25 3 35 4 t / / p.48/66

ɛ() ɛ(t) = ɛ()e λt / / p.49/66

Lorenz (1969) Tong & Lim (198) Priestly (1985) Sano & Sawada (1985) Eckmann et al (1985,86) Farmer & Sidorowich (1987) Broomhead & Lowe (1987) Casdagli (1989) Sugihara & May (199) Mees (1991) Mees et al.(1993) Judd & Mees (1995) Lapedes & Farber (1987) Weigend et al (199) Wolpert & Miall (199) Sauer (1993) Cao et al. (1995)... Sugihara & May (199) Tsonis & Elsner (1992) Ikeguchi & Aihara (1993,97), MDL log log semi log / / p.5/66

= / / p.51/66

/ / p.52/66

/ / p.52/66

/ / p.52/66

/ / p.52/66

/ / p.52/66

/ / p.52/66

/ / p.52/66

/ / p.53/66

ẑ(t) z(t) P (z(t) z)(ẑ(t) ẑ) R 1 = t=1 P P (z(t) z) 2 (ẑ(t) ẑ) 2 t=1 t=1 ẑ(t) z(t) E 1 = P (z(t) ẑ(t)) 2 t=1 P (z(t) z) 2 t=1 / / p.54/66

z(t) = z(t + 1) z(t), ẑ(t) = ẑ(t + 1) z(t) z(t) ẑ(t) ( ) R 2 = P ( z(t) z)( ẑ(t) ẑ) t=1 P P ( z(t) z) 2 ( ẑ(t) ẑ) 2 t=1 t=1 z(t) ẑ(t) S e = 1 P t=1 I( z(t) ẑ(t)) P / / p.55/66

(Sugihara & May, 1991) (Wales, 1991) / / p.56/66

1 1 8 9 8 Correlation (%) 6 4 2 Henon Ikeda Measles Chickenpox Cobalt Correlation (%) 7 6 5 Henon Ikeda Measles 4 3 2 1 2 3 4 5 6 7 8 9 1 p 2 2 3 4 5 6 7 8 m / / p.57/66

1/ f α (Tsonis & Elsner, 1992) ɛ(t) ɛ()e λt log ɛ(t) λt ɛ(t) t H log ɛ(t) H log t = log log, semi log / / p.58/66

(TI & Aihara, 1994,97) 1. 2. z(t) : ẑ(t) : z(t) = z(t + 1) z(t) : ẑ(t) = ẑ(t + 1) z(t) : {z(t), ẑ(t)} R 1 { z(t), ẑ(t)} R 2 R 1, R 2 R 1 1, R 2 / / p.59/66

1 (a) 1 (b) predicted.5.5 1 predicted 1 2 actual 2 actual (c).2 (d) predicted.1.2 predicted.2.3.2 actual actual / / p.6/66

Correlation (%) 1 95 9 85 8 75 7 65 6 55 Correlation (%) 1 95 9 85 8 Correlation (%) 1 9 8 7 6 5 4 3 1 2 3 4 5 6 7 8 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 1 Embedding dimension Embedding dimension Embedding dimension (a) (b) A.dat (c) 1 1 8 8 8 Correlation (%) 6 4 2 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 Embedding dimension Embedding dimension Correlation (%) 6 4 2 Correlation (%) 6 4 2 2 4 2 3 4 5 6 7 8 9 Embedding dimension (d) (e) NYEX (f) / / p.61/66

1. 2. 3. (a) (b) 4. / / p.62/66

/ / p.63/66

23 ( ) / / p.64/66

1. ( ) 2. ( ) / / p.65/66

15 8 8 ( ) 17: 723 A4 ( [ ]) / / p.66/66