CHEMOTHERAPY Proteus mirabilis GN-79 Escherichia coli No. 35 Proteus vulgaris GN-76 Pseudomonas aeruginosa No. 11 Escherichia coli ML-1410 RGN-823 Kle

Similar documents

VOL.32 S-7 CHEMOTHERAPY Table 1 MIC of standard strains of CTRX Fig. 2 Cumulative curves of MIC S. aureus (26 strains )

CHEMOTHERAPY aureus 0.10, Enterococcus faecalis 3.13, Escherichia coli 0.20, Klebsiella pneumoniae, Enterobacter spp., Serratia marcescens 0.78, Prote


CHEMOTHERAPY JUNE 1987 Table1 Media used *BHIB, brain heart infusion broth (Difco); /3 -NAD, S -nicotinamidoadeninedinucleotide (Sigma Chemical Co.);

VOL.30 S-1 CHEMOTHERAPY Table 1 Antibacterial activity of CTT against standard strains Table 2 Antibacterial activity of CTT against standard strains


CHEMOTHERAPY JUN Citrobacter freundii 27, Enterobacter aerogenes 26, Enterobacter cloacae 27, Proteus rettgeri 7, Proteus inconstans 20, Proteus

Staphylococcus sp. K.pneumoniae P.mirabilis C.freundii E. cloacae Serratia sp. P. aeruginosa ml, Enterococcus avium >100ƒÊg/ml


CHEMOTHERAPY

CHEMOTHERAPY DEC Table 1 Antibacterial spectra of T-1982, CTT, CMZ, CTX, CPZ and CEZ 106 CFU/ml Note: P; Peptococcus, S; Streptococcus, G; Gaffk

Fig.1 Chemical structure of BAY o 9867

VOL.48 NO.7 lase negative staphylococci, Escherichia coli, Klebsiella spp., Citrobacter freundii, Enterobacter spp., indole-positive Proteus, Serratia

epidermidis, Enterococcus faecalis, Enterococcus Klebsiella pneumoniae, Proteus mirabilis, indolepositive Proteus spp., Enterobacter spp., Serratia

VOL.27 S-3 CHEMO THERAPY mido)-3-[[[1- (2-dimethylaminoethyl)-1H-tetrazol-5-yl] -thio] methyl]-ceph-3-em-4-carboxylic acid dihydro- S. aureus 209-P JC





CHEMO THE RAPY OCT. 1994

VOL. 28 S-2 CHEMOTHERAPY

Fig. 1 Chemical structure of DL-8280

CHEMOTHERAPY NOV S. aureus, S. epidermidis, E. coli, K. pgeumoniae, E. cloacae, S. marcescens, P. mirabilis, Proteus, P. aeruginosa Inoculum siz


Clostridium difficile ciprofloxacin, ofloxacin, norfloxacin Bifidobacterium Lactobacillus Lactobacillus Bacteroides fragilis B. fragilis C. difficile

pneumoniae 30, C. freundii 32, E. aerogenes 27, E. cloacae 32, P. mirabilis 31, P. vulgaris 34, M. morganii 32, S. marcescens 31, H. influenzae 27, P.

1272 CHEMOTHERAPY MAR. 1975

VOL. 23 NO. 3 CHEMOTHERAPY 1067 Table 2 Sensitivity of gram positive cocci isolated from various diagnostic materials Table 3 Sensitivity of gram nega

CHEMOTHERAPY

Table 1. Antibacterial activitiy of grepafloxacin and other antibiotics against clinical isolates

CHEMOTHERAPY Methicillin-resistant S.aureus(MRSA) coccus epidermidis 105 Streptococcus pyogenes E.faecali senterococcus avium Enterococcus faecium Str

CHEMOTHERAPY JUNE 1986

Staphylococcus epidermidis Streptococcus pneumoniae Staphylococcus epidermidis Streptococcus pneumontae S. epidermidis Table 1. Summary of the organis

Key words: Disinfectants, Gram negative rods, Bactericidal effect P. aeruginosa 1, P. fluorescens 20 P. putida 179, P. cepacia 216 P. maltophilia 227,

CHEMOTHERAPY APRIL 1992 Acinetobacter calcoaceticus Staphylococcus aureus, Escherichia coli P. aeruginosa E. eoli, Klebsiella pneumoniae Serratia marc

CHEMOTHERAPY

VOL.27 S-5 CHEMOTHERAPY Table 1 Clinical evaluations of cefamandole on UTI (1) Benign prostatic hypertrophy (2) Transurethral resection of bladder tum

PCG = Benzylpenicillin ABPC= Ampicillin AMPC= Amoxicillin MPIPC = Oxacillin MCIPC = Cloxacillin SBPC= Sulbenicillin PIPC= Piperacillin

Table1MIC of BAY o 9867 against standard strains

CHEMOTHERAPY NOV Fig. 1 Imipenem (MK-0787) Enterobacter cloacae Enterobacter aero Morganella morganii Pseudo- Acinet ob acter Staphylococcus aur

(ABPC), Carbenicillin (CBPC), Surbenicillin (SBPC), Piperacillin (PIPC), Cephalexin (CEX), Cefaclor (CCL), Cephalothin (CET), Cefazolin (CEZ), Cefotia

coccus aureus Corynebacterium sp, Haemophilus parainfluenzae Klebsiella pneumoniae Pseudornonas aeruginosa Pseudomonas sp., Xanthomonas maltophilia, F

VOL.35 S-2 CHEMOTHERAPY Table 1 Sex and age distribution Table 2 Applications of treatment with carumonam Table 3 Concentration of carumonam in human

Table 1. Antibacterial spectrum SBT ABPC ABPC CPZ : sulbactamiampicillin : ampicillin : cefoperazone

Fig.2. Sensitivity distribution of clinical isolates of S. epidermidis (24 strains, 106 CFU/ml) Staphylococcus aureus Staphylococcus epider- midis Ent


R06_01

日本化学療法学会雑誌第61巻第6号


THE JAPANESE JOURNAL OF ANTIBIOTICS 48-8 Enterococcus avium 5Š, Corynebacterium xerosis 10Š, Corynebacterium pseudodiphtheriticum 10Š, Corynebacterium

CHEMOTHERAPY Table 1 Clinical effect of Sultamicillin


Fig. 1 Chemical structure of KW-1070


CHEMOTHERAPY APR. 1979

Key Words: Klebsiella pneumoniae, CEP-AIS, MIC, "MBC", MIC of drugs in combination

988 CHEMOTHERAPY NOV. 1971

Streptococcus pneumoniae,streptococcus pyogenes,streptococcus agalactiae,neisseria gonorrhoeae,h.influenzae,moraxella subgenus Branhamella catarrharis


スライド タイトルなし

03-b-„FŒ{›xŒ¾-4.02

- 1 -

VOL. 23 NO. 3 CHEMOTHERAPY 1379 Table 1 Susceptibility of clinical isolated strains to Tobramycin



CHEMOTHERAPY DEC (NFLX), ofloxacin (OFLX), ciprofloxacin (CPFX) Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterococcus faecali

CHEMOTHERAPY FEB Table 1. Activity of cefpirome and others against clinical isolates

Shigella flexneri 2a, Shigella flexneri 3a, Shigella sonnei, Salmonella, Salmonella arizonae, Citorobacter freundii, Enterobacter aerogenes, Enterobac

VOL. 33 S-5 CHEMO THERAPY Fig. 1 Chemical structure of HAPA-B 1-N-[ (2 S)-3-Amino-2-hydroxypropiony1]-4- O-(6-amino-6 - deoxy-ƒ -D- glucopyranosyl) -6

CHEMOTHERAPY APR Fig. 1 Chemical structure of cefotetan (CTT, YM09330)



日本化学療法学会雑誌第64巻第4号

CHEMOTHERAPY OCT Fig. 1 Chemical structure of CVA-K


THE JAPANESE JOURNAL OF ANTIBIOTICS ( 37 ) methicillin-susceptible Staphylococcus aureus (MSSA) Escherichia coli levof



VOL.47 NO.5 Table 1. Susceptibility distribution of Ĉ- lactams against clinical isolates of MRSA MRSA: rnethicillin- resistant Staphylococcus aureus

CHEMOTHERAPY Fig. 1 Chemical structure of CXM-AX

2 2 THE JAPANESE JOURNAL OF ANTIBIOTICS 69 1 Feb Neisseria gonorrhoeae ceftriaxone CTRX % 2010 CTRX 20 FQ staphylococci, E. faecium, N.

CHEMOTHERAPY Table 1 Urinary excretion of mezlocillin Fig. 4 Urinary excretion of mezlocillin Fig. 3 Blood levels of mezlocillin

CHEMOTHERAPY

THE JAPANESE JOURNAL OF ANTIBIOTICS 65 6 Dec DNA 2, , % 1.65% 1.17% 90% 9 Escherichia coli -

dihydrostreptomycin(sm), sulfanilamide(sa), kanamycin(km), paromomycin(prm), fradiomycin(frm), ampicillin(apc), cephaloridine (CER), nalidixic acid(na


CHEMOTHERAPY APR Fig. 2 The inactivation of aminoglycoside antibiotics by PC-904 Fig. 3 Serum concentration of PC-904 (1) Fig. 4 Urinary recover

CHEMOTHERAPY JUNE 1993 Table 1. Background of patients in pharmacokinetic study

日本化学療法学会雑誌第58巻第4号

2108 CHEMOTHERAPY SEPT Table 1 Antimicrobial spectrum Fig. 1



CHEMOTHERAPY SEPT. 1970

VOL.42 S-1 methicillin-susceptible Staphylococcus aureus (MSSA), Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, Klebsiella pneum

ヒビスコール液A カタログ



VOL. 40 S- 1 Table 1. Susceptibility of methicillin-resistant Staphylococcus aureus to meropenem Table 2. Coagulase typing of methicillin-resistant St

VOL. 37 NO. 3 Key words: Drug allergy, LMIT, Penams, Cephems, Cross-reactivity

Transcription:

VOL. 29 NO.8 CHEMOTHERAPY 865

CHEMOTHERAPY Proteus mirabilis GN-79 Escherichia coli No. 35 Proteus vulgaris GN-76 Pseudomonas aeruginosa No. 11 Escherichia coli ML-1410 RGN-823 Klebsiella pneumoniae GN-69 Escherichia coli ML-1410 RGN-238 Pseudomonas aeruginosa No. 47 Proteus vulgaris No. 9 Escherichia coli 121 Serratia marcescens No. 78 Citrobacter freundii GN-346 Proteus rettgeri GN-624 Proteus inconstans GN-627 Enterobacter cloacae No. 91

VOL. 29 NO. 8 CHEMOTHERAPY Table 1 In vitro antibacterial activity of penicillins Fig.1 (a) Enzymatic stability of penicillins Citrobacter freundii GN-346 Fig.1 (b) Enzymatic stability of cephalosporins Citrobacter freundii GN-346

CHEMOTHERAPY

Fig. 2 (a) Enzymatic stability of penicillins Proteus rettgeri GN-624 Fig. 3 (a) Enzymatic stability of penicillins Proteus inconstants GN-627 Fig. 2 (b) Enzymatic stability of cephalosporins Proteus rettgeri GN-624 Fig. 3 (b) Enzymatic stability of cephalosporins Proteus inconstants GN-627

CHEMOTHERAPY AUG. 1981 Fig. 4 (a) Enzymatic stability of penicillins Enterobacter cloacae No. 91 Fig. 5 (a) Enzymatic stability of penicillins E. coli No. 35 Fig. 4( b) Enzymatic stabilty of cephalosporins Enterobacter cloacae No. 91 Fig. 5 (b) Enzymatic stability of cephalosporins E. coli No. 35

Fig. 6 (a) Enzymatic stability of penicillins Proteus vulgaris GN-76 Fig. 6 (b) Enzymatic stability of cephalosporins Proteus vulgaris GN-76

CHEMOTHERAPY AUG. 1981 Fig. 7 (a) Enzymatic stability of penicillins Pseudomonas aeruginosa No.11 Fig. 8 (a) Enzymatic stabitity of penicillins Proteus mirabilis GN-79 Fig. 7 (b) Enzymatic stability of cephalosporins Pseudomonas aeruginosa No. 11 Fig. 8 (b) Enzymatic stability of cephalosporins Proteus mirabilis GN-76

Fig. 9 (a) Enzymatic stability of penicillins E. coli ML-1410 RGN-823 Fig.10 (a) Enzymatic stability of penicillins Klebsiella pneumoniae GN-69 Fig. 9 (b) Enzymatic stability of cephalosporins E. coli ML-1410 RGN-823 Fig.10 (b) Enzymatic stability of cephalosporins Klebsiella pneumoniae GN-69

CHEMOTHERAPY AUG. 1981 Fig. 11 (a) Enzymatic stability of penicillins E. coli ML-1410 RGN-238 Fig. 12 (a) Enzymatic stability of penicillins Pseudomonas aeruginosa No. 47 Fig. 11 (b) Enzymatic stability of cephalosporins E. coli ML-1410 RGN-238 Fig. 12 (b) Enzymatic stability of cephalosporins Pseudomonas aeruginosa No. 47

Fig. 13 (a) Enzymatic stability of penicillins Proteus vulgaris No.9 Fig.14 (a) Enzymatic stability of penicillins E. coli 121 Fig. 13 (b) Enzymatic stability of cephalosporins Proteus vulgaris No.9 Fig.14 (b) Enzymatic stability of cephalosporins E. coli 121

CHEMOTHERAPY AUG. 1981 Fig. 15 (a) Enzymatic stability of penicillins Serratia niarcescens No. 78 Fig. 15 (b) Enzymatic stability of cephalosporins. Serratia marcescens No.78

Table 3 RICHMOND type of enzyme producing gram negative bacilli Fig.17 Chemical structure of cephalosporins Fig.16 Chemical structure of penicillins

CHEMOTHERAPY AUG. 1981 GESTEL: Comparison of activity and Betalactamase stability of Cefotaxime with those of six other cephalosporins. Antimicrob. Agents Chemother. 16: 757 `760, 1979 9) KOJO, H.; M. NISHIDA, S. GOTO & S. KUWAHARA: Antibacterial activity of Ceftizoxime (FK 749), a new cephalosporin, against cephalosporinresistant bacteria, and its stability to (3-1) NEU, H. C.: Cefoxitin, a semisynthetic cephamycin antibiotic: Antibacterial spectrum and resistance to hydrolysis by gram-negative Beta-lactamases. Antimicrob. Agents Chemother. 6: 170 `176, 1974 motherapy 27, S-6, 70 `75, 1979 5) NEU, H. C.& K. P. Fu: In vitro antibacterial activity and Q-lactamase stability of SCE-129, a new cephalosporin. Antimicrob. Agents Chemother. 15: 646 `650, 1979 6) KING, A.; K. SHANNON & I. PHILLIPS: In vitro antibacterial activity and susceptibility of Cefsulodin, an antipseudomonal cephalosporin, to Beta-lactamases. Antimicrob. Agents Chemother. 17: 165 `169, 1980 7) Fu, K. P.& H. C. NEU: Beta-lactamase stability of HR 756, a novel cephalosporin, compared to that of Cefuroxime and Cefoxitin. Antimicrob. Agents Chemother. 14: 322 `326, 1978 8) MOUTON, R. P.; G. P.A. BONGAERTS & M. VAN lactamase. Antimicrob. Agents Chemother. 16: 549 `553, 1979 10) Fu, K. P.& H. C. NEU: Antibacterial activity of Ceftizoxime, a i9-lactamase-stable cephalosporin. Antimicrob. Agents Chemother. 17: 583 `590, 1980 11) YOSIIIDA, T.; S. MATSUURA, M. MAYAMA, Y. KAMEDA & S. KUWAHARA: Moxalactam (6059- S), a novel 1-oxa-ƒÀ-lactam with an expanded antibacterial spectrum: Laboratory evaluation. Antimicrob. Agents Chemother. 17: 302 `312 1980 therapy 27, 2, 211 `221, 1979 13) RICHMOND, M. H.& R. B. SYKES: The 8-lactamases of gram-negative bacteria and their possible physiological role. In Advances in Microbial Physiology. A. H. ROSE & D. W. TEMPEST, Eds. 9, 31 `85, Academic Press, New York, N. Y., 1973 16) NEtU, H. C & K. P. Fu: Cefaclor: In vitro spectrum of activity and Beta-lactamase stability Antimicrob. Agents Chemother. 13: 584 `588 1978,,

STABILITIES OF VARIOUS Q-LACTAM ANTIBIOTICS TO THE INACTIVATING ENZYMES PRODUCED BY GRAM NEGATIVE BACILLI ISAMU YOSHIDA, MASATOSHI OGAWA, SHUICHI MIYAZAKI, KEIKO NISHIKATSU and SACHIKO GOTO Department of Microbiology, Toho University School of Medicine Stabilities of j-lactam antibiotics (9 penicillins and 17 cephalosporins) to the inactivating enzymes produced by 15 strains of 10 gram negative bacilli, were investigated and the following results were obtained. Among penicillins, the drugs that were inactivated by many Q-lactamases were PCG, ABPC, MZPC, APPC and PIPC. CBPC, SBPC, TIPC and MCIPC were comparatively stable to the many j -lactamases. But their observed many varieties in the enzymes produced by different strains. Among cephalosporins, the drugs that were inactivated by many Q-lactamases were CER, CEX, CFT, CXD, CCL and CEZ. CFX, CMZ, CXM, CFS, CTX, CZX, 6059-S and CMX were almost stable. CMD, CTM and. CPZ had the stabilities between the former and the latter, and showed the different stabilities to the-various inactivating enzymes. 6059-S was completely stable to the all inactivating enzymes. The drugs that were inactivated by only one enzyme were CFX, CMZ, CXM and CZX. Other /3-lactam antibiotics were inactivated by two or more inactivating enzymes.