E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

Similar documents

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

30

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

note4.dvi

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

QMII_10.dvi

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

The Physics of Atmospheres CAPTER :

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

master.dvi

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ


() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

TOP URL 1

I ( ) 2019

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

Gmech08.dvi

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

( ) ,

液晶の物理1:連続体理論(弾性,粘性)

pdf

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

物性物理学I_2.pptx

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

QMI_10.dvi

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

LLG-R8.Nisus.pdf

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

Gmech08.dvi

構造と連続体の力学基礎

eto-vol1.dvi

QMI_09.dvi

QMI_10.dvi

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

i

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

IA

( )


1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Gmech08.dvi

K E N Z OU

4‐E ) キュリー温度を利用した消磁:熱消磁

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

chap10.dvi

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

Contents 1 Jeans (

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2


C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1


PDF

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

meiji_resume_1.PDF



Maxwell

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

sec13.dvi

Z: Q: R: C: sin 6 5 ζ a, b

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

19 /

( ) ( )


N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

Untitled

eto-vol2.prepri.dvi


08-Note2-web

Transcription:

4 213 5 8 4.1.1 () f A exp( E/k B ) f E = A [ k B exp E ] = f k B k B = f (2 E /3n). 1 k B /2 σ = e 2 τ(e)d(e) 2E 3nf 3m 2 E de = ne2 τ E m (4.1) E E τ E = τe E = / τ(e)e 3/2 f de E 3/2 f de (4.2) f (3.2) F = (3.21) f = f + f 1 v f = f 1 /τ, f 1 f 1 = τv f. (4.3) V J J = ( e) τv(v f )dr. V f x v v x v 2 x = v 2 /3 v 2 j x () = e τv 2 f x dr = e x τv 2 3 n x. j = ( e)d n, D = τv 2 /3. (4.4) D (diffusion constant) D = τ 3 v2 = τk B m = µ e k B (4.5) (4.5) (Einstein relation) 4-1

E 1/2 3/2 1.18 () +3/2 +3/2 1.93 () +1/2 +1/2 1.18 1. +1/2 1.1 1 E [1] 4.1.2 B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall effect) R H = E y J x B z (4.6) (Hall coefficient) E y j y = (4.6) (E.11b) j = ˆσE σ xx = ne2 m A l = ne2 τ m 1 + (ω c τ) 2 E y = (A t /A l )E x (4.7) E, σ xy = ne2 ωc τ 2 m 1 + (ω c τ) 2, (4.8) E A t R H = 1 ne ω c (A 2 l + A2 t ) (4.9) ω c τ 1 R H = 1 τ 2 E ne τ 2 E = 1 Γ(2s + 5/2)Γ(5/2) n( e) (Γ(s + 5/2)) 2 = r H n( e) (4.1) s ( e e )r H (Hall factor) 1 (s = ) 1 ( 1 )τ (s = ) (E.9) (4.1) B y z y + x + + + + + + + J y J x 4.1 z x y J y () 4-2

4.2 2 (heat current, thermal flux) ( phonon) (phonon dragg) (Joule heating) 4.2.1 n x (thermal flux density) j qx j qx = nv x (E µ) = v x (E µ)f(e)d(e)de (4.11) (temperature gradient) κ n (thermal conductivity) j q = ˆκ j qx κ n = / x (4.12) 4.2.2, x 1, x1 B (a) B 2 2 B B A A B J V (b) (4.12) (thermoelecric effect) (a) A 1 2 B 1 2 AB V AB (Seebeck effect) ( = 1 2 ) S AB = V AB (4.13) (Seebeck coefficient) (b) AB J Q J (Peltier effect) Q AB J Π AB = Q AB J (4.14) (Peltier coefficient) (a) BAB J (x ) / x (temperature gradient) Q/ x 4-3

(homson effect) (homson coefficient) τ = Π AB = S AB, Q/ x J( / x) τ A τ B = ds AB d (4.15) (4.16) (Kelvin relations or homson relations) ( F) S A ( ) τ A ( ) d (4.17) S AB = S A S B (4.18) S V V (4.18) (thermocouple) 2 4.2.3 (3.2)(3.21) f/ t = v f + F m vf = f f τ(e). (4.19) f f f f = f. f E (E E F )/k B a f = f E a E a = f E ( k B ) E E F k B 2 = f E F E E f = E F E f E. v f = v E f E = mv f E. (4.2a) (4.2b) E (4.19) (4.2) [ f = f τ(e)v ee + E ] F E f E. (4.21) x E x x (3.23) [ j x = e nv x = e v x f(e)d(e)de = e vxτ 2 ee x + E ] F E f x E D(E)dE. 4-4

J n-type heating Cooling heating p-type 4.2 p n j x = S = E x / x = v 2 xτ E F E e / f E D(E)dE = 1 e [ E F vxτ 2 f E D(E)dE τe 2 f E D(E)dE / τe f ] E D(E)dE (4.22) vx 2 2E/3m (4.21) f / E = f /k B τ E s S = 1 [ ] τe E E F = 1 [( ) ] 5 e τ E e 2 + s k B E F. (4.23) S E F s e +e S τ E E F (4.5) 4.2.4 n p PC CPU 4.3 3.2 4-5

1 InSb a B * (nm) 1 1.1 n c 1/3 ab*=.26 Ge:Sb Ge:As Ge:P CdS:Cl CdS:In Si:Sb Si:P Si:As GaP:Zn WSe :a 2 WO :Na 3 5 6 7 1/3 logn c CH OH:Li 3 Ar:Na Xe:Hg 4.3 ( ) n c cm 3 (4.24) P. Edwards and M. Sienko, Phys. Rev. B 17, 2575 (1978) ( ) (metal-insulator transition) ([2] [5]) () () n c a B 4.3 n 1/3 c a B =.26 (4.24) (4.24) Mott (Mott Mott s criterion) 4.3 Mott BEC 5 4-6

G [1] M. Lundstrom, Fundamentals of Carrier ransport (Cambridge, 2). [2] N. F. Mott, Metal-Insulator transitions (CRC Press, 199); (1996). [3] H. Kamimura and H. Aoki, he Physics of Interacting Electrons in Disordered Systems (Oxford, 199). [4] (, 22). [5] D. Stauffer and A. Aharony, Introduction to Percolation heory (CRC Press, 1994); (, 21). E B F = e(e + v B) (3.2) (3.21) f 1 f f e f (E + v B) k = f 1 τ (p = k) (E.1) f/ k f f 2 de = v dp f / k = ( f / E)v f v B ( v ) f 1 E a ev E f E e (v B) f 1 k = f 1 τ (E.2) f 1 = eτ(v E a ) f E 3.3 (E.4) v E = v E a + eτ m (v B) E a, E = E a eτ m B E a E a = 1 1 + ω 2 c τ 2 [ E + eτ m B E + ( eτ m ) 2 (B E)B ω c = e B m f 1 f 1 = eτe 1 + ω 2 c τ 2 [ v + eτ m v B + ( eτ m ) 2 (B v)b (E.3) (E.4) ], (E.5) ] f E. (E.6) (E.7) B = (,, B z )E = (E x, E y, ) v z = (E.7) f 1 f 1 = e f ( τ [v x E 1 + (ω c τ) 2 E ω c τ 2 ) ( x 1 + (ω c τ) 2 E ωc τ 2 )] y + v y 1 + (ω c τ) 2 E τ x + 1 + (ω c τ) 2 E y (E.8) 4-7

j x = en v x f = f + f 1 v x f v k j x = 2 ( e)v x f(k) dk (2π) 3 = e2 4π 3 τv 2 x 1 + (ω c τ) 2 (E x (ω c τ)e y ) f E dk. (E.9) vx 2 E ξ(e) vxξ(e)dk 2 = 2 3m Eξ(E)dk. (E.9) (E.1) f = A exp( E/k B ) D(E) = A D E 1/2 (E.1) f E = f k B, n = A D (E.9) [ j x = ne2 τ m 1 + (ω c τ) 2 f E 1/2 de = 2A D 3k B E (ne 2 /m )(A l E x A t E y ) (A l A t ) E 3/2 f de ωc τ 2 ] E x 1 + (ω c τ) 2 E y, (E.11a) E (E.11b) E (4.2) j y xy ( ) j = ne2 Al A t m E. (E.12) A t A l F 2 AB BAB m + m B m 2 B A B + V BA = Π BA ( ) Π BA ( + ) + (τ B τ A ) = dv BA d V BA ( ) Π BA( + ) + dπ BA d + τ B τ A =, + τ B τ A = d d ( ΠBA ) = τ B τ A. S AB = Π AB, ds AB d = τ A τ B (F.1) G A() () 2 ab ( A L R) H = H a + H b () H a H b = Hab H aa = H bb = 4-8

A ψ(t) = c a (t)ϕ a e E at/ + c b (t)ϕ b e E bt/ (G.1) Schrödinger H ψ = i ψ/ t c a H a e ie at/ + c b H b e ie bt/ = i[ċ a a e ie at/ + ċ b b e ie bt/ ] a b c a c b dc a dt = i c bh dc b dt = i c ah bae iωt. ω E b E a abe iω t, A A 2 ω 2 a c a () = 1c b () = (G.13) c a c b dc a /dt = dc b /dt = c () a (t) = 1 c () b (t) = (G.2) (G.3) c (2) a (t) = 1 1 2 t c (1) a (t) = 1, c (1) b (t) = i [ t dt H ab(t )e iω t t dt H ba(t )e iω t ] H ba(t )e iωt dt,, c (2) b (t) = i t H ba(t )e iω t dt. (G.4a) (G.4b) H (t) = V cos ωt (G.5) ω a b ω V ab = a V b (G.4b) c b (t) i V ba i V ba t dt cos ωt e iω t = V ba 2 sin[(ω ω)t/2] e i(ω ω)t/2. ω ω [ e i(ω +ω)t 1 ω + ω ] + ei(ω ω)t 1 ω ω (G.6) 4-9

ω ω ω + ω ω ω P b (t) = c b (t) 2 V ba 2 2 sin 2 [(ω ω)t/2] (ω ω) 2 (G.7) 2 sin 2 [(ω ω)π/2] (ω ω) 2 (G.7) t b (ω ω)/(2π) V ba 2 t ω H = ee z cos ωt 1-1 -5 5 1 ω ω (G.8) (G.5) (G.7) P b (t) pe 2 2 sin 2 [(ω ω)t/2] (ω ω) 2, p e a z b (G.9) (G.9) a b 2 2 a b 4.4 (a) (G.9) c a () = 1 c b () = 1 (G.9) 4.4(b) (sitimulated emission, or insused emission) b 4.4(c) (spontaneous emission) LED (G.8) H ωk = ie z[a kλ 2ϵ V e ikr a kλ e ikr ] s (G.1) a k k V s ω k V s ϵ E 2 E cos ω k t 1 n k b, n k a, n k + 1 W = 2π ( ) H ba 2 δ(e b E a ω k ) = 2πe2 ωk 1, n k+1 a kλ 2ϵ V z 2, n kλ 2 δ(e b E a ω k ) s ( ) = 2πe2 ωk a z b 2 (n k + 1)δ(E b E a ω k ) 2ϵ V s (G.11) (a) Œõ zžû (b) U ± úo (c) Ž R úo 4.4 2 4-1

n k 1 (G.6) 1 H ba = (V ba/2)e iωt (G.13) c a H ab = V ab 2 eiωt (G.12) dc a dt = i 2 c bv ab e i(ω ω)t, dc b dt = i 2 c av ba e i(ω ω)t. d 2 c b dt 2 (G.13) + i(ω ω ) dc a dt + V ab 2 (2) 2 = (G.14) λ ± 1 2 (δ ± δ 2 + V ab 2 / 2 ), δ ω ω (G.15) c a () = 1c b () = c b (t) = c + e iλ +t + c e λ t (G.16) ω R (Rabi frequency) c b (t) = i V ab ω R eiδt/2 sin(ω R t/2), ( ) c a (t) = e [cos iδt/2 ωr t i δ ( )] (G.17) ωr t sin 2 ω R 2 ω R (ω ω) 2 + V ab 2 / 2 (G.18) (G.17) δ ab (Rabi oscillation) 4-11