(p.2 ( ) 1 2 ( ) Fisher, Ronald A.1932, 1971, 1973a, 1973b) treatment group controll group (error function) 2 (Legendre, Adrian

Similar documents
4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)


ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

最小2乗法

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

201711grade1ouyou.pdf

28

Hsiao (2003, 6 ) Maddala, Li, Trost and Joutz (1997) Hsiao and Pesaran (2004) 4.2 y it = γy it 1 + x itβ + ε it i = 1, 2,..., N t = 1, 2,...T (

c (y it 2 y it 3 ) y it 2 y it 3 (y it 1 y it 2 ) 4 Arellano and Bond (1991) Ahn and Schmidt (1995) 2 y 5 E[y is, (ν it ν it 1 )] = 0, s =0, 1,

Part () () Γ Part ,

Microsoft Word - 計量研修テキスト_第5版).doc

k2 ( :35 ) ( k2) (GLM) web web 1 :

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

³ÎΨÏÀ

untitled

ohpmain.dvi

03.Œk’ì

統計学のポイント整理

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i

第10章 アイソパラメトリック要素

6.1 (P (P (P (P (P (P (, P (, P.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

第11回:線形回帰モデルのOLS推定

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

waseda2010a-jukaiki1-main.dvi

1 Tokyo Daily Rainfall (mm) Days (mm)

st.dvi

6.1 (P (P (P (P (P (P (, P (, P.101

数理統計学Iノート

tokei01.dvi

151021slide.dvi

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

: , 2.0, 3.0, 2.0, (%) ( 2.

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.


4 2 p = p(t, g) (1) r = r(t, g) (2) p r t g p r dp dt = p dg t + p g (3) dt dr dt = r dg t + r g dt 3 p t p g dt p t r t = Benefit view dp

2 Tobin (1958) 2 limited dependent variables: LDV 2 corner solution 2 truncated censored x top coding censor from above censor from below 2 Heck

研究シリーズ第40号

chap10.dvi

(pdf) (cdf) Matlab χ ( ) F t

untitled

分散分析・2次元正規分布

Masanori Hashimoto Rene Fahr and Hilmar Schneider 1. Hashimoto, Masanori Fahr, Rene and Hilmar Schneider Hashimoto, Masanori 2004 Fahr

5 : 1 1

seminar0220a.dvi

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

3 M=8.4 M=3 M=.8 M=4.7 M=5.6 M=3 M=5. M=4.6 M=7 M=3 M= (interaction) 4 - A - B (main effect) - A B (interaction)

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

4 OLS 4 OLS 4.1 nurseries dual c dual i = c + βnurseries i + ε i (1) 1. OLS Workfile Quick - Estimate Equation OK Equation specification dual c nurser

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

untitled


* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

µ i ν it IN(0, σ 2 ) 1 i ȳ i = β x i + µ i + ν i (2) 12 y it ȳ i = β(x it x i ) + (ν it ν i ) (3) 3 β 1 µ i µ i = ȳ i β x i (4) (least square d

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

2 1,, x = 1 a i f i = i i a i f i. media ( ): x 1, x 2,..., x,. mode ( ): x 1, x 2,..., x,., ( ). 2., : box plot ( ): x variace ( ): σ 2 = 1 (x k x) 2

chap9.dvi

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

dvi

統計的データ解析

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

solutionJIS.dvi

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0

C. R. McKenzie ( 38 ) (Keio Household Panel Survey) control group treatment group 1

untitled

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

Microsoft Word - 表紙.docx

カルマンフィルターによるベータ推定( )

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

renshumondai-kaito.dvi

x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2

Untitled

第1章 微分方程式と近似解法

.. est table TwoSLS1 TwoSLS2 GMM het,b(%9.5f) se Variable TwoSLS1 TwoSLS2 GMM_het hi_empunion totchr

Ishi

i

第5章 偏微分方程式の境界値問題

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr

1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199

untitled

Myers, Montgomery & Anderson-Cook (2009) Response Surface Methodology

Microsoft Word - 計量研修テキスト_第5版).doc

10:30 12:00 P.G. vs vs vs 2

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1

Transcription:

2004 1 1 1.1 Maddala(1993) Mátyás and Sevestre (1996) Hsiao(2003) Baltagi(2001) Lee(2002) Woolridge(2002a), Arellano(2003) Journal of Econometrics Econometrica Greene(2000) Maddala(2001) Johnston and Di- Nardo(1997) Woolridge(2000a) Handbook of Econometrics (North-Holland) Chamberlain (1984) Arellano and Honoré (2001) 1.2 1.2.1 Gauss, Carl Friedrich (Airy, George Biddell) (Poincaré, Henri)

2004 2 (p.2 ( ) 1 2 ( ) Fisher, Ronald A.1932, 1971, 1973a, 1973b) treatment group controll group 3 3 1 2 3 1 4 1 (error function) 2 (Legendre, Adrian Marie: 1752-1833) 1805) 1806 1809 1995 3 1992 1 4 2004 R.A. 1

2004 3 (erro components model) heterogeneous 1.1 1 y it = α + X itβ + u it i = 1,...N; t = 1,...T (1) i two-way error component 5 u it = µ i + λ t + ν it (2) µ i λ t ν it λ t = 0 (2) (one-way error component) u it = µ i + ν it (3) 5 n

2004 4 (1) OLS (pooling estimation) one-way fixed effect estimation (Least Squares Dummy Variable Model ; LSDV) (one-way random effect estimation) y it θy i X it θx i (Generalized Least Squares; GLS) θ 1.2.2 Baltagi(2001) Hsiao(2002)

2004 5 (self selectivity) (non-response) (attrition) Panel Study of Income Dynamics (PSID) 1968 4802 31000 5000 National Longitudinal Surveys of Labor Market Experience (NLS) 5 ( )1966 45-49 (5020 ) ( )1966 14-24 5225 ( )1967 30-44 5083 ( )1968 14-21 (5159 ) ( )1979 14-24 NLSY79 1986 1996 12-16 1997 NLSY97 12686 1993 (Statistics Canada) 15000 31000 The Canadian Survey of Labor Income Dynamics (SLID) 1984 5921 The German Social Economic Panel 1985 6471 The Belgian Socioeconomic Panel 1985 715 2092 The French Household Panel

2004 6 2059 The Hungarian Household Panel (1922-96) 1991 5000 The British Household Panel Survey (BHPS) The Dutch Socio-Economic Panel (ISEP) 1984-97 1992 The Russian Longitudinal Monitoring Survey (RLMS) 1999 5074 7799 The Swiss Household Panel (SHP) 1985 2012 6110 The Luxembourg Panel Socio-Economique Liewen zu L zebuerg (PSELL) 1994 2978 8232 EuroStat 1994 The European Community Household Panel (ECHP) ECHP 1.3 Bayes, Thomas 6 1 2 1950 (Savage, Leonard J) 6 Bayes theorem A H 1, H 2,... H k A H i P (H i A) P (A H i ) P (H i A) H 1, H 2,... H k H i H 2... H k = Ω P (H i A) = P (H i ) P (A H i ) sum{p (H j ) P (A H j )} P (H i ) H i prior probability P (H i A) posterior probability

2004 7 (Zellner, Arnold) 7 1.3.1 (Ordinary Least Squares; OLS) Y 1, Y 2... Y n µ Y var(y ) = σ 2 Y Y i = µ Y + ε i E(ε i ) = 0, var(ε i ) = σ 2 Y E(Y i ) = µ Y e i = Y i µ Y i = 1,..., n µ Y min n e 2 i = min n (y i µ Y ) 2 i=1 (sum of squared errors, SSE) µ Y SSE µ Y = d n (y i µ Y ) 2 i=1 i=1 = 2 n (Y i ˆµ Y ) = 0 dµ Y i=1 n Y i = nˆµ Y ˆµ Y = i=1 n Y i i=1 ˆµ Y (Best Linear Unbiased Estimator; BLUE) Gauss-Markov s theorem n 7 Koop(2003) Lancaster(2004)

2004 8 1.3.2 89 y = β 0 + β 1 x + u (4) x u Cov(x, u) 0 (5) β 0 β 1 x x u z Cov(z, u) = 0 (6) Cov(z, x) 0 (7) x Cov(z, u) = 0 Cov(z, x) 0 1 = 0 x = π 0 + π 1 z + v (8) π 1 = Cov(z, x)/v ar(z) (7) π 1 0 ( ) ˆβ 1 = n (z i z)(y i ȳ) i=1 n (z i z) (x i x) i=1 (9) 8 Bowden and Turkington (1984) Wooldridge (2003) 15 Wooldridge(2003) 9 Philip G. Wright(1928) B Stock and Trebbi (2003) Philip Wright Sewall Wright Philip Wright

2004 9 ˆβ 0 = ȳ ˆβ 1 x (10) z = x (6) (7) p lim( ˆβ 1 ) = β 1 (6) (7) x u 10 z x z u p lim ˆβ 1 = β 1 + Corr(z, u) Corr(z, x) σu σ x (11) σ u σ x u x Corr(z, u) Corr(z, x) ˆβ 1 11 y 2 y 1 = β 0 + β 1 y 2 + β 2 z 1 + β 3 z 2 + u 1 (12) z 1 z 2 z 3 z 4 Hausman (1978) y 2 12 y 2 y 2 = α 0 + α 1 z 1 + α 2 z 2 + α 3 z 3 + α 4 z 4 + v 2 (13) z j u 1 v 2 u 1 y 2 u 1 1 = 0 y 2 u 1 10 6 7 4 9 10 11 Weak Instrumental Variables Staiger and Stock (1997) Nelson and Sartz (1990) Gary Chamberlain Jerry Hausman Christopher Sims 12 Durbin-Wu-Hausman test Wu-Hausman test Bowden and Turkington (1984, pp.50-52) Davidson and MacKinnon (2004, pp.338-340)

2004 10 u 1 = δ 1 v 2 + e 1 (14) 13 ˆv 12 y 1 = β 0 + β 1 y 2 + β 2 z 1 + β 3 z 2 + δ 1ˆv 2 + ε (15) t 1 = 0 y 2 (l) k l k (4) 6 (1) (4) û (2) û (l) R 2 (3) û nr 2 χ 2 (l k) (16) 1.3.3 (Method of Moments) (Pearson, Karl) f(x θ) θ

2004 11 E(x) = xf(x θ)dx = g(θ) (17) E(x) θ θ θ = g 1 (E(x)) (18) E(x) x ˆθ = g 1 ( x) (19) ˆθ θ 13 (Generalized Method of Moments; GMM) 14 (overidentified) 15 p q 2 Q(θ) arg min θ Q(θ) (20) Q(θ) = f(θ) Af(θ) A (weighting matrix) Q(θ) 0 f(θ) = 0 Q(θ) = 0 E(f(θ)) = 0 q f(θ) 13 14 Hansen(1982) Hansen and Singleton(1982) 15 (Hansen(1982))

2004 12 1.3.4 (Edgeworth, Francis Ysidro) 16 5 y = (y 1, y n ) θ = (θ 1, θ 2, θ p ) likelihood L(θ) 17 L(θ) θ θ maximum likelihood estimator θ L(θ) logl(θ) θ log(lθ) θ = 0 (21) y i = βx i + ε i i = 1,, n (22) ε i N(0, σ 2 ) 16 Pratt (1976) 1997 pp.108-116 Silvey (1970) Cox and Hinkley (1974) (1995) 17 1992

2004 13 { log L(β) = log [(2πσ 2 ) n2 exp (y }] βx) (y βx) 2σ 2 = n 2 log(2πσ2 ) 1 2σ 2 (y βx) (y βx) β (23) β = ˆβ = x y/x x (24) log L(β) 2 log(lβ) β 2 = x x/σ 2 (25) β 2 log L(β) β I(θ) y y f θ (y) { 2 } log L(θ) I(θ) = E θ 2 { 2 } log f θ (y) = E θ 2 (26) I(θ) V {t(y)} 1 I(θ) (27) θ Z H 0 : θ = θ 0 n( θ θ 0 ) N(0, 1/I 1 (θ 0 )) θ 1 > θ 0 ni1 (θ 0 )( θ θ 0 ) > Z α (28) I 1 (θ) = I(θ)/n Z α α Z

2004 14 H 0 : θ = θ 0 H 1 : θ θ 0 H 0 θ 0 χ 2 (1) 2 log L( θ) L(θ 0 ) > χ2 α(1)(= Z 2 α/2 ) (29) χ 2 α(1) = Z 2 α/2 (Wald Tests) r r(θ) = 0 r(θ) V ar(r(ˆθ)) R(θ 0 )V ar(ˆθ)r (θ 0 ) (30) R(θ) r i (θ)/ θ i r k V ar(ˆθ) W = r (ˆθ)(R(ˆθ) V ar(ˆθ)r (ˆθ)) 1 r(ˆθ) (31) H 0 : θ = θ 0 χ 2 (r) (Lagrange Multiplier Tests) l(θ) r(θ) = 0 θ l(θ) r (θ)λ (32) g( θ) R ( θ) λ = 0 (33) r( θ) = 0 λ LM = λ R( θ)ĩ 1 R ( θ) λ (34) H 0 : θ = θ 0 χ 2 (r) 18 18 Davidson and MacKinnon (2004, 10

2004 15 1.4 19 1.4.1 3 µ 1, µ 2,... µ a (a 3) analysis of variance: ANOVA (factor) (level (treatment 20 A A 1,..., A a r 1,..., r a A i j y ij y ij = µ i + ε ij i = 1, 2,..., a; j = 1,..., r i (35) µ i i ε ij N(0, σ 2 ) n = Σr i r i µ i µ = r i µ i n grand mean 19 3 1992 1969 20 completely randomized design (randomized block design) 1969

2004 16 (effect) α i = µ i µ r i α i = 0 (30) y ij = µ + α i + ε ij i = 1, 2,... ; j = 1,..., r i (36) ( µ)+ i α i + ε ij ) one-way layout A H 0 : µ 1 = µ 2 =... µ a H 0 : α 1 = α 2 =... α a = 0 S e = (y ij ȳ i ) 2 i j = yij 2 yi 2 r i (37) i j i S e σ 2 ν e = n a H 0 : µ 1 = µ 2 =... µ a y ij = µ + ε ij µ ȳ S T = i H 0 (y ij ȳ i ) 2 = yij 2 ȳi 2 n (38) j i j S A = S T S e = yi 2 r i y 2 n i = r i (ȳ i ȳ) 2 (39) i S A S e ν A = a 1 F = S A ν A S e ν e (40) ν A ν e F (ν A, ν e ) (ANOVA Test) (35) (S A ) (S A ν A ) (S e ) (S e ν e )

2004 17 1.4.2 21 V i = (y ij ȳ i ) 2 (r i 1) i = 1,..., a i V e = (r i 1)V i (n a) = c i (y ij ȳ i ) 2 (n a) j B = (n a) log V e (r i 1) log V i (41) i H 0 : σ1 2 = σ2 2 =... = σa 2 a 1 B = 1 + 1 3(a 1) B { i 1 r 1 i 1 n a } (42) F 2 ( main effect () (one factor at a time experiment) ( (factorial experiment) ) 22 1.4.3 A B 21 1992,pp.122-1228) 22

2004 18 A i B j k y ijk AB a, b r y ijk = µ ij + e ijk i = 1, 2,... a; j = 1,..., b; k = 1, 2,..., r (43) µ ij A i B j e ijk N(0, σ 2 ) n = abr A i A i B j B j µ i = µ ij b, µ j = µ ij a, µ j i i µ ij ab (44) µ A i B j µ main effect α i = µ i µ, i = 1,... a; β j = µ j µ, j = 1,... b (45) µ ij A, B (interaction) (αβ) ij = µ ij (µ + α i + β j ) = µ ij µ i µ j + µ i = 1, 2,... a; j = 1, 2..., b (46) (38) (41) y ijk = µ + α i + β j + (αβ) ij + ε ijk (47) ()+( A )+( B )+( AB )+( ) Σα i = 0, Σβ j = 0, (αβ) ij = 0, j = 1,... b; (αβ) ij = 0, i = i j 1,... a S A, S B, S AB S e j v T = n 1, v A = a 1, v B = b 1, v AB = (a 1)(b 1), v e = ab(r 1) (48) V A = S A v A, V B = S B v B, V AB = S AB v AB, V e = S e v e (49) F H 0 : (αβ) ij 0 F AB = V AB V e H 0 : α i 0 F A = V A V e H 0 : β j 0 F B = V B V e

2004 19 y ij = µ + α i + β j + (αβ) ij + ε ij (50) S e

2004 20 1.1