J-PARC

Similar documents
Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

J-PARC October 14-15, 2005 KEK

untitled

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

Canvas-tr01(title).cv3

nenmatsu5c19_web.key


MEG μ + e + γ ( ) ( MEGA) = (BSM) MEG μ + e + γ ( : a few ) 180 γ μ + e +

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

Mott散乱によるParity対称性の破れを検証

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary


COE

Hasegawa_JPS_v6

km_atami09.ppt

Drift Chamber

untitled

スーパーカミオカンデにおける 高エネルギーニュートリノ研究


nakajima_

Microsoft PowerPoint - 島田美帆.ppt

Spacecraft Propulsion Using Solar Energy Spacecraft with Magnetic Field Light from the Sun Solar Wind Thrust Mirror Solar Sail Thrust production by li


Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive


Table 1: Basic parameter set. Aperture values indicate the radius. δ is relative momentum deviation. Parameter Value Unit Initial emittance 10 mm.mrad

TeV b,c,τ KEK/ ) ICEPP

スペースプラズマ研究会-赤星.ppt

rcnp01may-2

XFEL/SPring-8

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

Electron Ion Collider と ILC-N 宮地義之 山形大学

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

T2K実験とは T2K実験 東海-神岡295km 長基線ニュートリノ振動実験 T2K実験の目的 1. νe appearanceの探索 T2K俯瞰図 νe SK 295km J-PARC θ13 の測定 (感度 sin 2θ13>0.006) P(νμ νe) = s223sin22θ13sin2(

Microsoft PowerPoint - okamura.ppt[読み取り専用]

1..FEM FEM 3. 4.

Solar Flare neutrino for Super Novae Conference

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete

Introduction MPPC is new semiconductor photon sensor Technology is very similar to SiPM. Under development by Hamamatsu Photonics (HPK) MPPC have not

news

21 Daya Bay θ 13 Lawrence Berkeley National Laboratory Brookhaven National Laboratory 2012 ( 24 ) Daya Bay 2011

日立金属技報 Vol.34

untitled

T05_Nd-Fe-B磁石.indd

dr-timing-furukawa4.pptx[読み取り専用]

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

荷電粒子飛跡検出器ドリフトチェンバーの構造と性能テスト

Muon Muon Muon lif

LHC-ATLAS Hà WWà lνlν A A A A A A

橡

加速器の基本概念 V : 高周波加速の基礎

main.dvi

塗装深み感の要因解析

On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2


Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum

1 2 3


PowerPoint Presentation

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

FPWS2018講義千代

Akira MIZUTA(KEK) AM, Nagataki, Aoi (ApJ, , 2011) AM + (in prep)

B-p タギング法を

OHO.dvi


ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

OPA134/2134/4134('98.03)

Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b

SCR8-17XX Technical Data Optical Magnetic Brushless Coreless Encoder Motor Unitmm 5 Number of commutator segments Brushes Precious Metal Bearings Slee

untitled

HK-Yokoyama-ICRR2013.key

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

PowerPoint Presentation

25 3 4

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

橡最終原稿.PDF

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( )

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

talk.title-…„…C…—†[#1

<95DB8C9288E397C389C88A E696E6462>

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju


Outline Purpose Introduction of FFAG at KURRI Experiment Result Summary Future

Table 1. Main specifications of VAD plant. Fig. 2. Typical operating pattern of low alloy steel.


2

Transcription:

J-PARC 2007 11 12 J-PARC

J-PARC

(clfv)

CKM (mν=0) ν MNS clfv µ + e + γ Lµ : -1 0 Le : 0-1 (clfv) µ + e + e - e + Lµ : -1 0 0 0 Le : 0-1 +1-1

clfv clfv mixing W e e O(10-50 ) clfv clfv

clfv

Various Model Predict Charged Lepton Mixing

Charged Lepton Mixing by SUSY µ + e + γ m 2 l = ( m 2 11m 2 12m 2 13 m 2 21m 2 22m 2 23 m 2 31m 2 32m 2 33 ) In SUSY, clfv processes are induced by the off-diagonal terms in the slepton mass matrix. In MSSM, no offdiagonal terms exist @Planck, and need other mechanisms. SUSY-GUT SUSY-Seesaw

How are Sleptons mixed? @ M_planck SUSY-GUT GUT Yukawa interaction SUSY Seesaw Model Neutrino Yukawa interaction (m 2 L) 21 3m2 0 + A 2 0 8π 2 h 2 t V td V ts ln M GUT M Rs (m 2 L) 21 3m2 0 + A 2 0 8π 2 h 2 τ U 31 U 32 M GUT M Rs CKM matrix Neutrino oscillation

SUSY Predictions SUSY-GUT(SU5) PRISM-Phase 1 PRISM-Phase 2

µ! + (A, Z) " e! + (A, Z) 1s!"#$%"& µ!!"#$%&'()"*!(#&+,"'%!"#$%&'()*%+$%#,-+. µ! " e! ## µ! + (A, Z) " # µ + (A, Z!1)!Le =1!L" =1 Signal (m"-b") Background muon decay in orbit radiative pion/muon capture muon decay in flight, cosmic rays! 105MeV 3

events / channel 10 3 10 2 10 1 10 1 SINDRUM-II PSI events / channel 10 SINDRUM II Class 1 events: prompt forward removed MIO simulation e - measurement µe simulation e + measurement MIO simulation µe simulation 80 1 90 100 Class 2 events: prompt forward 80 90 100 momentum (MeV/c) @ PSI Class 1 events: prompt forward removed e - measurement e + measurement Class 2 events: prompt forward 80 90 100 momentum (MeV/c) A exit beam solenoid B gold target C vacuum wall D scintillator hodoscope E Cerenkov hodoscope A H SINDRUM II F G H I J inner drift chamber outer drift chamber superconducting coil helium bath magnet yoke B(µ + T i e + T i) < 4.3 10 12 decayed veto veto D Final result on mu - e conversion on Gold target is being prepared for publication < 7 x 10-13 90%CL I C B H D G J F E 1m configuration 2000

MECO @ BNL/AGS MECO (the US) To eliminate beam related background, beam pulsing was adopted (with delayed measurement). To increase a number of muons available, pion capture with a high solenoidal field was adopted. For momentum selection, curved solenoid was adopted.!"#$%&'($#)*#+,-#./ The MECO Experiment 09*#+38.<93/,.:!+1.6*8+/$087#.8,< >C@?$!$B$C@F$!D 09*#+38.<93/,.: =+8<93/,8.$087#.8,< >?@A$!$B$C@?$!D %98.$0/8**,.:!1+:#/ at BNL 0/+12$!+134#+ '877,-1/8+6 09*#+38.<93/,.: E#/#3/8+$087#.8,< >C@A$!$B$F@A$!D Aim for 10-16 '+56/17 '178+,-#/#+ %98.$;#1-0/8* Construction funding ~2005 Start physics run ~2010 Cancelled in 2005 CANCELLED

J-PARC µ-e New Experiment PRISM Production Target Stopping Target B(µ + Al e + Al) < 10 16 J-PARC PRISM-Phase1 B(µ + T i e + T i) < 10 18 PRISM-Phase2

Brookhaven MECO 2005 Fermilab mu2e MECO 2007 6 :EoI, 2007 EOI 2007 10 :LoI!"#$%&'($#)*#+,-#./ The mu2e Experiment 0/+12$!+134#+ 22 batches = 1. 467s MI cycle %98.$0/8**,.:!1+:#/ NEUTRINO PROGRAM MUONS Booster Batches 4.6!10 12 p/batch 09*#+38.<93/,.:!+1.6*8+/$087#.8,< >C@?$!$B$C@F$!D 09*#+38.<93/,.: =+8<93/,8.$087#.8,< >?@A$!$B$C@?$!D '877,-1/8+6 09*#+38.<93/,.: E#/#3/8+$087#.8,< >C@A$!$B$F@A$!D Aim for 10-16 '+56/17 '178+,-#/#+ %98.$;#1-0/8* Construction funding ~2005 Start physics run ~2010 B(µ + Al e + Al) < 10 16 CANCELLED Accumulator (NuMI +Muons) Recycler 56!10 12 p/sec (NuMI) Debuncher (Muons) 4!4.6!10 12 p/1467ms = 12.5!10 12 p/sec (Alternative: 24 batches=1.6s MI cycle" 11.5!10 12 p/s) 0.1s 1.367s

1 (BR~10-16 ) PRISM-Phase1 COMET (COherent Muon Electron Transition) Production Target Stopping Target B(µ + Al e + Al) < 10 16

COMET Production Target Stopping Target 10 11 muon/sec

10 11 / Extinction=( )/( ) 10-9!sec P!~40MeV/c P!<75MeV/c curved solenoid <2x10-3 10m

Pulsed Proton Beam (1) " & +#A,Z% " #A,Z&1%* "!+#A,Z&1%! " e + e & # & +#A,Z% " e & +#A,Z% : #$1#s% Extinction N bg = N P!Y "/P!A "!R ext!p!!a N P : total # of protons #$10 21 % Y "/P : " yield per proton #0.015% A " : " acceptance #1.5!10 &6 % R ext : Extinction Ratio #10 &9 % P! : Probability of! from " #3.5!10 &5 % A : detector acceptance #0.18% N bg < 0.22 Extinction < 10 &9 Extinction: < 10 &9 Power: 60 kw #4!10 13 pps@8 GeV%

Pulsed Proton Beam (2) : Bunching Scheme J!PARC Accelerator Complex RCS : 1 bunch operation h=1 or h=2 w/ empty bucket MR : Empty bucket Scheme h=9 or h=8 Adiabatic dumping : small 30 GeV! 8 GeV Reduce RCS painting area Smaller 3!50BT collimator 8 GeV, 7 "A ; 56 kw to NP!Hall MECO!like Scheme

Pion Capture A large muon yield can be achieved by large solid angle pion capture by a high solenoid field, which is produced by solenoid magnets surrounding the proton target. P T (GeV/c) = 0.3 B(T ) ( R(m) ) 2 B=5T,R=0.2m, PT=150MeV/c. Superconducting Solenoid Magnet for pion capture 15 cm radius bore a 5 tesla solenoidal field 30 cm thick tungsten radiation shield heat load from radiation a large stored energy 1400 target 300 1000 Proton beam 3600

Muon Transport Beamline Muons are transported from the capture section to the detector by the muon transport beamline. Requirements : long enough for pions to decay to muons (> 20 meters 2x10-3 ). high transport efficiency (Pμ~40 MeV/c) negative charge selection low momentum selection (Pμ<75 MeV/c) Straight + curved solenoid transport system is adopted.

Charged Particle Trajectory in Curved Solenoids A center of helical trajectory of charged particles in a curved solenoidal field is drifted by D = p qb θ bend 1 2 ( cos θ + 1 cos θ D : drift distance B : Solenoid field! bend : Bending angle of the solenoid channel p : Momentum of the particle q : Charge of the particle! : atan(p T /P L ) This effect can be used for charge and momentum selection. ) This drift can be compensated by an auxiliary field parallel to the drift direction given by B comp = p qr 1 2 ( cos θ + 1 cos θ p : Momentum of the particle q : Charge of the particle r : Major radius of the solenoid! : atan(pt/pl) ) Tilt angle=1.43 deg.

Design of Muon Transport Beamline (preliminary) Solenoid field Compensation field Inner radius

Spectra at the End of the Muon Transport Preliminary beamline design main magnetic field compensation field radius of magnets (175 mm) Spectra at the end of the beamline (top left) total momentum (top right) direction angles to beam axis (bottom left) time of flight (bottom right) beam profile muons for open histograms, pions for hatched histograms. 75 MeV/c Transport Efficiency # of muons /proton 0.0024 # of stopped muons /proton # of muons of pµ >75 MeV/c /proton 0.0007 2x10-4

Overview of the New Experiment : COMET Production Target The beamline design is very important to reduce the beam intrinsic B.G. Stopping Target ID signals B.G. reduction hit rate reduction

COMET

to detect and identify 100 MeV electrons. under a solenoid magnetic field. to stop muons in the muon stopping target. to eliminate low-energy beam particles and to transport only ~100 MeV electrons. Detector Components a muon stopping target, curved solenoid,tracking chambers, and a calorimeter/trigger and cosmic-ray shields.

Detector and Spectrometer To identify the genuine mu-e conv. enevts from a huge number of B.G. events. signal : a 105MeV electron from the stopping targets. background : muon decay in orbit etc. Muon Decay in Orbit (DIO) Main B.G. source Electron spectrum from muon decay in orbit energy timing as precisely as possible Reject using a curved solenoid spectrometer Energy spectrum of electrons from decays in orbit in a muonic atom of aluminum, as a function of electron energy. The vertical axis shows the effective branching ratio of μ-e conversion. DIO/MUC 10-13 10-14 10-15 (E end E e ) 5 Signal 10-16 101 102 103 104 105 Ee (MeV/c)

Mom. Selection in a Curved Solenoid D = p qb θ 1 bend 2 ( cos θ + 1 ) cos θ Collimator Detector solenoid 30MeV/c 60MeV/c 105MeV/c Curved solenoid spectrometer Traget solenoid Top view Side view 32

Transmission of the Electron Transport (CS) Electron Transport System Parameters (preliminary) Radius : 50 cm Magnetic field : 1 Tesla Bending angle : 180 degrees Geometrical Acceptance Solid angel at the target : 0.73 mirror effect at a graded field Transport efficiency : 0.44 Total : 0.32 Suppression of electrons from decay in orbit. about 10-8 suppression about 1000 tracks / sec for 10 11 stopping muons. DIO/Stopping-µ 10-2 10-4 10-6 10-8 10-10 10-12 Ratio of a number of electrons reaching the end of transport to all electrons emitted in 4π. Acceptance DIO survival rate 0 20 40 60 80 100 Eth (MeV) 0.6 0.5 0.4 0.3 0.2 0.1 0 10-1 1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 0 20 40 60 80 100 Momentum (MeV/c) (a) 2T-1T 3T-1T 4T-1T 10-9 40 50 60 70 80 90 100 R(cm)

Electron Detection (preliminary) Under a solenoidal magnetic field of 1 Tesla. In vacuum to reduce multiple scattering. Straw-tube Trackers to measure electron momentum. should work in vacuum and under a magnetic field. A straw tube has 25μm thick, 5 mm diameter. One plane has 2 views (x and y) with 2 layers per view. Five planes are placed with 48 cm distance. 250μm position resolution. Electron calorimeter to measure electron energy and make triggers. Candidate are GSO or PbWO2. APD readout (no PMT).

Momentum Resolution 5 stations in vacuum One station has two views (x and y). One view has two layers. Straw tube has 25μm thickness. Position resolution : 250 μm 230 kev/c in sigma (multiple scattering dominated.) 700 600 500 400 300 200 Residual distribution between reconstructed and true momenta. 7.658 / 7 Constant 602.7 14.05 Mean -0.5946E-01 0.4049E-02 Sigma 0.2141 0.3779E-02 100 0-2 -1 0 1 2!P (MeV/c)

Cosmic Ray Shields Both passive and active shields are used. Passive shields 2 meter of concrete and 0.5 m of steel Active shields layers of scintillator veto counters (~1% inefficiency)!"#$%&'&!.+/$'0-&+(10&)2 ('%03+($0#'0))4'"% ('&&) *)""%+,&-&)!5%-&2+(")&#"02+(3&$'%"6&'&%

Signal Acceptance 800 700 600 ID Entries Mean RMS 202 3820 104.1 0.8589 500 The signal acceptance is given by the geometrical acceptance of the detector and the analysis (cut) acceptance. 400 300 200 100 Signal region 0 98 100 102 104 106 108 rec Pe (MeV/c) Items geometrical solid angle at target transport efficiency analysis energy cut pt > 52 MeV/c cut time window cut Acceptance 0.73 0.44 0.68 0.82 0.38 total 0.07 signal energy window (104.0-105.2 MeV in uncorrected energy scale)

single event sen. B(µ + Al e + Al) N! 6x10 17 muons. fcap 0.6 Ae acceptance 0.07 B(µ + Al e + Al) = 1 N µ f cap A e, 8GeV / 1 6 10 17 0.6 0.07 = 4 10 17 8x10 20 0.0024 0.29 6x10 17 B(µ + Al e + Al) < 10 16 (90% C.L.)

Background (1) Backgrounds Events Comments Muon decay in orbit Radiative muon capture Muon capture with neutron emission Muon capture with charged particle emission 0.05 <0.001 <0.001 <0.001 230 kev resolution (2) Radiative pion capture* Radiative pion capture Muon decay in flight* Pion decay in flight* Beam electrons* Neutron induced* Antiproton induced 0.12 0.002 <0.02 <0.001 0.08 0.024 0.007 prompt late arriving pions for high energy neutrons for 8 GeV protons (3) Cosmic-ray induced Pattern recognition errors 0.04 <0.001 10-4 veto efficiency Total 0.34

COMET DRAFT J-PARC NP-Hall

( ) J-PARC B(µ - +Al e - +Al)<10-16 Background 2006 12 J-PARC PRISM-Phase1 LoI 2007 11 J-PARC COMET