2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

Similar documents
ii 15 Abel,,,.,,,.,,, ( ) ( ) 8 24 ( ) : : ( ), ( ) 8 20 ( ) 15:30 16:10 16:30 17:00

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

2000年度『数学展望 I』講義録

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2


III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

Z: Q: R: C: 3. Green Cauchy

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Z: Q: R: C: sin 6 5 ζ a, b

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {


(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

2

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

第10章 アイソパラメトリック要素


変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

I = [a, b] R γ : I C γ(a) = γ(b) z C \ γ(i) 1(4) γ z winding number index Ind γ (z) = φ(b, z) φ(a, z) φ 1(1) (i)(ii) 1 1 c C \ {0} B(c; c ) L c z B(c;

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

Z: Q: R: C:

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

2 2 L 5 2. L L L L k.....


Jacobi, Stieltjes, Gauss : :

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

Gmech08.dvi

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

Part () () Γ Part ,

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

プログラム

( ) ( )

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

2011de.dvi

/ n (M1) M (M2) n Λ A = {ϕ λ : U λ R n } λ Λ M (atlas) A (a) {U λ } λ Λ M (open covering) U λ M λ Λ U λ = M (b) λ Λ ϕ λ : U λ ϕ λ (U λ ) R n ϕ

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

TOP URL 1

第1章 微分方程式と近似解法

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

The Physics of Atmospheres CAPTER :

meiji_resume_1.PDF

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)


untitled

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

chap9.dvi

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ

°ÌÁê¿ô³ØII

(1) (2) (3) (4) 1


Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

量子力学 問題

tnbp59-21_Web:P2/ky132379509610002944

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

73

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%


Note.tex 2008/09/19( )

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (


,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

本文/目次(裏白)

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

prime number theorem

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

I II


( ) Loewner SLE 13 February

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

85 4

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

Transcription:

15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ = S. (iii) U φ U ψ ψ φ 1 φ(u φ U ψ ) ψ(u φ U ψ ). (iv) S U ψ C ψ U φ U ψ φ A (iii) ψ A ( ). :. 1.3. Hausdorff S A R = (S, A). A φ (local coordinate), S., S, R. 1

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ).. 1.1..,,.,, (, ). ([1] 4.9). 1.2. Hausdorff S R S. χ., n 2, n 1, n 0, χ = n 2 n 1 + n 0., χ = 2 2g g. ( ) 2. g = 0, g = 1., ( cf.1.6). ( ). 1.1..,. S 2 C { } (cf. [5]),, U 0 = C 2, U = C 2 \ {0} { }, φ 0 (z) = z, φ (z) = 1/z., P 1 P 1 (C). 1.2. C L = {m 1 ω 1 + m 2 ω 2 m 1, m 2 Z} ( ).,, E C E(C). ( ) P.,.,,, ( ), (cf. [2] pp.46).

3 1.2. 1.4. 2 R, R f : R R z R U φ f(z) R V ψ, ψ(f(φ 1 (x))) x = 0. ( ). R R, R R, R = R., (local parameter).,. 1.5. R U C U f, U R, f(z) = t = x + iy t = f(z) U, (x(z), y(z)). U z 0 f(z 0 ) = 0 C, t z 0. 1.3. R = P 1, z 0 C, f(z) = z z 0, z 0 = f(z) = 1/z P 1 ( ).. 1.3. R R f z. z z = f(z) t, t z t = f(t) 0 or t = f(t) = t n (n 1). t = t n, n, f z. n > 1 z, n = 1.,. 1.4. R U R f, f(u) R. f R z 0 w 0 R f U, f(z) = w 0. 1.3 1.6. n S n S f S S, f (covering map). : S P P U f 1 (U) f.

4 S f S. 2 S 1 f 1 S 1, S 2 f 2 S 2 g : S 1 S 2 g : S 1 S 2 g f 2 = f 1 g., S 1 = S 2, g. g. S 1 = S 2 = S, f 1 = f 2 = f, g, S. S f S A(S f S). S S Id S S., S. S,. S f S, G = A(S f S) S. P S, P U, G 2 g, g g(u ) g (U ) =., G.,. S S S. S, G S S (G) = G\S 1.1. S S, S f S G S P, Q G, f (P ) = f (Q ), Q = g(p ) g G. S (G) S., G 1, G 2, S (G 1 ) S (G 2 ), G 1, G 2., G H S (H), S (H 1 ) = S (H 2 ) H 1 H 2. S, S ( )., I = [t 0, t 1 ] R. γ : I X X. γ(t 0 ), γ(t 1 ).,,. γ, γ γγ. P 0 [γ], P 0.. [γ], S. 1.5. S f S S R, S f, R., R R.. ( ),,.,. 1.6. R.,,,.

5 (1) P 1 (C) (2) C. (2-1) C = P 1 (C) \ { } (2-2) C \ {0} = P 1 (C) \ {0, } (2-3) C/L, L 2 Zω 1 + Zω 2, ω 1 /ω 2 H. (3) H. : (2-3). : (3).,,,,, ( )., 2,., 2., (3) 2n,, Ω 1., 2g., g.. 1.7. 2 2 2n. (1) aa 1 (2) a 1 b 1 a 1 1 b 1 1 a 2 b 2 a 1 2 b 1 2 a h b h a 1 h b 1 h (3) a 1 a 1 a 2 a 2 a h a h., (1), (2).,, (2). ; 1.8. R α k, β k, k = 1,... g., P 0, 2 P 0, 4g (2), a k, b k α k, β k (k = 1,..., p). α k, β k P 0 S., 2, [4].... 1.9. S P 0 α 1, β 1,..., α g, β g., π 1 (S, P 0 )

6 g [α k ], [β k ] (k = 1,..., g) [α k ][β k ][α k ] 1 [β k ] 1 = 1. g,. : 1.7. ( ) g R S. g S,, g 2.., Betti (= 2g) ( or ) (= 2g or g ).,, 1.,, ( 0 ). k=1 1.4 1.8. R, R P 1. K(R), R. f K(R) f(z), f z., z U φ φ, f φ 1 φ(z). ( ) R. u, v., u. R. 1.10 ( ). R z, f R {z} ( )., U f U {z}, f R ( ). 1.11 ( ). R ( ) f f.. :, (cf. [2] p.11). 1.12 ( ). R f, g R ( ) {p n } f(p n ) = g(p n ), f = g.

7 1.13. {f n } R f, f. 1.9. R f z 0 R. z 0 t, a 0 = f(z 0 ) f(z) a 0 = a 1 t+a 2 t 2 +, a 0 = f(z 0 )., a j 0 j f z = z 0, ν z0 (f)., 0., a 0 =, 1 f(z) = a 1t + a 2 t 2 + 0. a j 0 j m, ν z0 (f) = m, m..,.. z = z 0, w = w 0 = ψ(φ 1 (z 0 )) d dz f(φ 1 (z)) = d dw f(ψ 1 (w)) dw dz,.,. R φ A φ(u φ ) a φ, b φ. ω : φ (a φ, b φ ), U φ U ψ φ, ψ a φ (z) = a ψ (ψ(φ 1 (z)))(ψ φ 1 ) (z) b φ (z) = a ψ (ψ(φ 1 (z)))(ψ φ 1 ) (z) 1 (1-form), ω = adz + bdz. b φ 0. ω = adz. f, a φ (z) = (f φ 1 ) (z), b φ 0 1-form. f, df. R C 1 du, du = u dz + u z dz z. f df. ω 1-form, ω φ (b φ, a φ ). Re ω = 1 2 (ω + ω), Im ω = 1 2i (ω ω) ω. ω = bdz + adz. ω = iadz + ibdz, ω. 1-form ω ω 1, ω 2 ω = ω 1 + ω 2 ( u x i u y ) dz. u du + i du = 2 u z =. adz a = {a φ } φ A., a, (, a φ ), ω = adz. ω., ω z Res(ω, z), z R

8. D,. f ω fω. ω 1 /ω 2. 1.4. P 1 (C) D D., U 0 = (D\{ }, φ 0 = Id) U = (D \ {0}, ζ = φ : z 1/z). ω = a dz. f = a φ0, U 0 U f(z) = a φ0 (z) = a φ (ζ(z)) dζ ( ) 1 1 dz = a φ z z, 2 f(z) = c 2 z + c 3 +,., 2. 2 z3 2 f. Abel., 1 (DFK, differential of first kind), 0 2 (DSK), 3 (DTK).,.. R p 1,..., p m p n {p n }, {p n } ( ). ([1] pp. 170-171). 1.14. z 1, z 2 R 2. z 1 1, z 2 1 f K(R). 1.15. z R, z n( 2), R ω z,m. 1.14. 1.16. R, R S, S f : S S R R, f., 2. 1.17. R, R, S, S. f : S S f f # K(R ) g g K(R) g(z) = g(f(z)), f # R, R.,. 1.18. R, R. K(R) = K(R ), R = R.

9.., R, R 2 z 1, z 2 z 1, z 2, z 1 1 1, z 2 1 1, Re ω z1,z 2 z 1, z 2 ω z1,z 2. ( [2] p.121): 1.19. R,,, (, 0),. 1.5 1.10. S, φ φ(u φ ) c φ Ω : φ c φ c φ (z) = c ψ (ψ(φ 1 (z))) (ψ φ 1 ) (z) 2 z φ(u φ U ψ ), S 2 2-form. 2-form Ω c dz 2, cdzdz, c dx dy, cdx dy, i cdz dz. 2 1-form 2-form 2., 2-form 2., dz dz = (dx + idy) (dx idy) = 2idx dy. 1-form ω j = a j dz + b j dz, j = 1, 2 ω 1 ω 2 2-form (a 1 b 2 a 2 b 1 )dz dz, ω 1 ω 2., ω dω ( b dω = z a ) dz dz. z., ω = adz + bdz dω = da dz + db dz. ω, dω = 0. 1.6, (C 1 ). α (cf. [2] p.143). 1.20. α R. α R ω α. (1) α, ω α R R ω, (Re ω α ) ω = 2π ω. S α

10 (2) α, ω α α z 0 i 1, z 1 i 1, R \ {z 0, z 1 }, R ω,. R γ 1-form ω, ω γ ( ). ω 1 ( 2, 3 ) 1 ( 2, 3 ).. γ ( γ, aφj dz + b φj dz ). φ j γ 1.11. R 1-form ω R C 1 u ω = du,., C 1-1-form ω dω = 0, (closed form). 1.21. R 1-form. (1). (2) 2 γ 0, γ 1 ω = ω. γ 0 γ 1 (3) γ ω = 0. γ d(du) = 0,.. 1.22. R., dω = 0 C 1 - u ω = du. ω ( ), ( ) f ω = df. ω, u(z) = z z 0 ω, du = ω. ( Stokes ). 1.23. R C 1 1-form ω, dω = 0. :, S dω = S ω. Cauchy. 1.24. R ( ) γ [γ] = 0, R ω, ω = 0. ω. Cauchy. γ 1.25. 0. R

11 1.26. R g, α 1, β 1,..., α g, β g R. R ω 1, ω 2, { } g ω 2 ω 2 ω 1 = 0, β k α k β k i k=1 k=1 { g ω 1 α k α k ω 1 ω 2 β k α k ω 2 β k ω 1 γ 1-from ω γ. } = (ω 1, ω 2 ) = S ω 1 ω 2. 1.27. g 1 R α 1, β 1,..., α g, β g. (1) ω α k, k = 1,..., g A(R). ) (2) A(R) ω (α t ω, C g. 1 α k ω, θ k = δ jk θ 1,..., θ g.. α j ( ) 1.12. θ k (k = 1,..., g). T (i, j) θ i β ( j ) ( ), ω A(R), ω,..., ω = ω,..., ω T β 1 β g α 1 α g. T R {α 1, β 1,..., α g, β g }. T = t T, Im T. 2,. [3]. 2.1 k = C. 2.1. k (1 ) K (1) K k x, K/k(x). (2) k K. K/k(x) x.. 2.1 (Schmidt). k, k.

12 2.2. k α, ν P (α) = 0 K ( ) P K. 2.2. k K x, ν P (x) 0 K 2,. x K x k ν P (x) = 0( P ). ν P (x) x P. m = ν P (x) > 0 x m, m = ν P (x) < 0 x m. 2.3. K P k. k = C C. 2.2 C,. K k = C. P K, u K. u P ū(p ). p P, u a mod (p) a C u P. K = {ū(p ) u K} K., ([1] 4.2). 2.4. K 1, K S R K. K, R(K). K(R(K)) = K. S, K., 2.5. C K, K R K(R) K. K, R(K). 2.3,,,. R. 2.6. R K(R) C, R.

13, 1.18., ([1] pp.222-223)., K C- R = R(K).. [1],, [2],, [3], Riemann-Roch, SS2007 [4], Abel-Jacobi I, SS2007 [5],,

14