V T n n = A r n A n r n U V m m n n UT U = I V T V = I : A = A = UΣV T A T AV = VΣ T Σ : AB T = B T A T V A T A V A V T V = I 3 V A V T V = I : A AK =

Similar documents
A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

all.dvi

i

pdf

December 28, 2018

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(


Part () () Γ Part ,

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

i

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

meiji_resume_1.PDF

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

73

A_chapter3.dvi


1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0


all.dvi

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

DVIOUT-HYOU

I 1

4 小川/小川

R R 16 ( 3 )

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

B ver B

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R


I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

IA

Microsoft PowerPoint - 資料04 重回帰分析.ppt

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

untitled

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

QMI_09.dvi

数学Ⅱ演習(足助・09夏)

( ) ( )

QMI_10.dvi


(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

sec13.dvi


小川/小川

応用数学III-4.ppt

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

K E N Z OU

Gmech08.dvi


C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

III Kepler ( )

, = = 7 6 = 42, =

1 y(t)m b k u(t) ẋ = [ 0 1 k m b m x + [ 0 1 m u, x = [ ẏ y (1) y b k m u

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)


変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F


nakata/nakata.html p.1/20

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.


6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

C:/KENAR/0p1.dvi

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

入試の軌跡

newmain.dvi


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.



6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

untitled

2012 A, N, Z, Q, R, C

TOP URL 1

A

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

II III II 1 III ( ) [2] [3] [1] 1 1:

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

( ) 1,771,139 54, , ,185, , , , ,000, , , , , ,000 1,000, , , ,000


ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.


[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

Transcription:

PLS Janes PLS PLS PCR MLR PCA singular value decomposition : m n A 3 A = U m n m m Σ m n VT n n U left singular matrix V Σ U = m m A m r Σ = m n σ σ r A m m r

V T n n = A r n A n r n U V m m n n UT U = I V T V = I : A = A = UΣV T A T AV = VΣ T Σ : AB T = B T A T V A T A V A V T V = I 3 V A V T V = I : A AK = K 4 Σ σ,, σ r A T A Σ 5 AA T U = UΣΣ T 6 3 U U T U = I 7 A = UΣV T A T AV = VΣ T U T UΣV t V = VΣ T Σ U T U = I, V T V = I

A T A = T A T A Iλ = λ 4 = 4 8 λ λ8 λ 6 = λλ = λ =, 4 4 8 x y = y = x 3 AK = K x y x y = k = 5 x y 3 : dax = Adx dax + b T CDx + e = {Ax + b T CD + Dx + e T C T A}dx 3

4 CovXd, Ye = d T X T Ye d e X T Y d T d = e T e = X T Y = UΣV T = u σ v T + + u r σ r v T r d = a u + + a r u r e = b v + + b r v r d T X T Ye = d T u σ v T + + u r σ r vr T e = a u + + a r u r T u σ v T + + u r σ r vr T b v + + b r v r = a σ b + + a r σ r b r = a T Σb d T d = e T e = d T d = a u + + a r u r T a u + + a r u r = a + + a r = a T a d T d = a T a = e T e = b T b = d T d =, e T e = CovXd, Ye = d T X T Ye a T a =, b T b = CovXd, Ye = a T Σb Q = a T Σb λ a T a λ b T b 4

d dx xt x = x { Q d dx at x = a a = Σb λ a = Q b = Σ T a λ b = { Σb = λ a a T Σ = λ b T a T b λ! = λ { a T Σb = λ a T Σb = λ { λ = λ! = λ Σb = λa Σ T a = λb λ ΣT Σb = λb Σ T Σb = λ b b b,, b r 5

σ b σ rb r = λ b λ b r b,,, a d T X T Ye = a σ b + + a r σ r b r d T X T Ye σ,, σ r σ d T X T Ye a, b a =, b = d = a u + + a r u r e = b v + + b r v r d, e d = u e = v d, e 6

4 Moore-Penrose Moore-Penrose Moore-Penrose generalized inverse MLR PCR A # n m = V Σ = n n Σ n m m m UT σ σ r Ax = b A ˆx = A # b Ax b A ˆx = A # b x x 4 N = UΣV T U V d dt x x = c c v + c c v + + c n c n v n x m c m c m c mn c i c i c mi T 7

dx i dt = r r r n v v v m r r c n N NK = K K N GN = G 5 MLR 5 y x,, x n m y x y = Xa + ε y y = x x n x x n a a + ε ε y m x m x mn Q a a n ε m 8

5 Q = = m i= ε i m {y i a + a x i + + a n x in } i= = y Xa T y Xa Q a dq da = a dax + b T CDx + e = {Ax + b T CD + Dx + e T C T A}dx C = I, D = A, e = b dax + b T Ax + b = {Ax + b T A + Ax + b T A}dx = Ax + b T Adx Q = y Xa T y Xa dq = d{y Xa T y Xa} = y Xa T Xdx dq da = a y Xa T X = 9

y Xa T X = y Xa T X = X T y Xa = AB T = B T A T X T y = X T Xa a = X T X X T y 53 Moore-Penrose y y = a +a x + +a n x n Moore- Penrose â = X # y X T X X X # = X T X X T XX T X X # = X T XX T 6 PCA 6

cm kg 85 8 87 78 83 76 t P C x, x t P C = w x + w x θ w, w t P C

X ˆX X ˆX T ˆX ˆXT ˆX loading x ij = x ij x j X = x x x n x x x n x m x m x mn cm kg 85 8 87 78 83 76 X = 85 8 87 78 83 76 t = w x + w x + + w n x n w T w = t m = x m w w 6 w x m = x m x m x mn, w = w w n

t = t t t n, t = Xw m t = m = m = m = m = m = i= t i m x i w i= m i= n x ij w j j= n m w j x ij j= n w j j= i= σt = m tt t = m Xw T Xw = w T m XT X = w T Vw w Lagrange w T w = σ t Qw = σ t λw T w = w T Vw λw T w 3

dax + b T CDx + e = {Ax + b T CD + Dx + e T C T A}dx dw T Vw = w T Vdw dw T w = w T dw dqw = w T Vdw λw T dw = w T V = λw T Vw = λw V V = V T w V σ t = w T Vw = λ σ t V λ 63 i 4

= = σ t i σ t + σ t + + σ t n λ i λ + λ + + λ n σ t i i i i σ t i V i i i 64 t i = Xw i T = P = t t t k p p p k T = XP X = TP T 65 loading X = U Σ V T = T P T UΣ = T, V = P T P loading 5

66 3 cm kg 85 8 87 78 83 76 X 3 X T X 4 X T X 5 6 7 PCR 7 X X # a a X X 7 Moore-Penrose B Y = X B = T P T B X = TP T 6

ˆB P CR = PT # Y Y = X ˆB P CR 8 PLS PCR PLS PLS X Y T,U T U X,Y T,U X X T X X Y X T Y X Y PLS PLS X Y Höskuldsson 988 X T Y w c w c Xw Yc Höskuldsson 988 w T w = c T c = w c } t = Xw 3 t u u = Yc 4 t T t = u T u = t u 5 u = bt b b = u T t u T = bt T u T t = bt T t u T t = b 7

} p = X T t 6 p,q p,q q = Y T PCA loading u PCA loading 7 X tp T Y uq T PLS 8 X Y PLS X Y loadings P Q B P Q p q B b Y = UQ T = TBQ T = XP T # BQ T ˆT = XP T # = XB PLS B PLS = P T # BQ T ˆT = XP T # P = X T T P T = T T X TP T = TT T X ˆT = XP T # 8 EGF NGF ERK 3 c-fos c-jun ERK t ERK t ERK t3 EGF 4 NGF 4 4 c-fos 3min c-jun 3min EGF NGF ERK c-fos c-jun PLS PLS 8

MAPK IEG X Y X Y X Ȳ X Y X Ȳ X Y 3 X T Y 4 X T Y w c w T w = c T c = w c 5 t = Xw u = Yc PLS t u t T t = u T u = t u 6 PLS u = bt b b = u T t 7 p = X T t q = Y T u PLS loadings p q 8 PLS n X tp T X Y uq T Y 3 X tp T Y uq T 9 PLS Y = XB PLS B PLS a P T P T = UΣV T b P T # = VΣ U T P T # c B PLS = P T # BQ T B PLS Y Ȳ = X XB PLS c-jun ERK ERK c-fos c-jun PLS loadings p q 8 X = 4 4 4, Y = 9

3 X = X T Y = =, Y = 4 X T Y = UΣV T U = w w, V = c c V {X T Y T X T Y}V = VΣ T Σ = λ λ = λ 4 = λ 4λ = λ = 4, x y = 4 x = y x = k y x y k = k = c =

U {X T YX T Y T }U = UΣΣ T = λ λ λ = λ λ + 4λ = λλ 4λ + 4 + 4λ = λλ 4λ = x y z x = z, y = x y z = k k = k = w = λ = 4,, = 4 x y z

5 t = Xw t = = t = u = Yc u = = 6 b = u T t b = = 7 p = X T t p = = q = Y T u

q = = 8 X tp T = 9 B PLS a p T p T = p T pu = UΣΣ T 4U = UΣΣ T 4 λ = λ = 4, u = pp T = λ λ λ = λ λ + 4λ = λλ 4λ + 4 + 4λ = λλ 4λ = λ = 4,, 3

x = z, y = x y z v = k = 4 x y z v = p T p T = b p T p T # A # = VΣ U T p T # = = c B PLS B PLS = P T # BQ T B PLS = = 4 4

Fos EGF Fos NGF Y Ȳ = X XB PLS Jun EGF Jun NGF Y = X B PLS XB PLS + Ȳ = ERK t EGF ERK t EGF ERK t3 EGF ERK t NGF ERK t NGF ERK t3 NGF 4 3 + 4 3 4 4 3 3 p = Fos EGF = 4 ERKt EGF + ERK t3 EGF Jun EGF = 4 ERKt EGF + ERK t3 EGF + Fos NGF = 4 ERKt NGF + ERK t3 NGF Jun NGF = 4 ERKt NGF + ERK t3 NGF + X 3 t, u q = Y u ERK X c-fos c-jun Y t t3 3 83 9 9 Janes and Yaffe Metrics stimuli Cell responses Science 9 R Mevik and Wehrens The pls Package: Principal Component and Parital Least Squares Regression in R, J Stat Soft 8:, 7 5

93 Janes and Yaffe PLS Further reading Abdi, H 7 Partial least square regression PLS regression In NJ Salkind ed: Encyclopedia of Measurement and Statistics Thousand Oaks, CA, pp 74-744 PLS PDF Abdi http://utdallasedu/ herve/ Jane and Yaffe 6