01-a-”Oı€™JŠY-4.02

Similar documents
CHEMOTHERAPY APRIL 1992 Acinetobacter calcoaceticus Staphylococcus aureus, Escherichia coli P. aeruginosa E. eoli, Klebsiella pneumoniae Serratia marc

Fig.1 Chemical structure of BAY o 9867



CHEMOTHERAPY JUNE 1987 Table1 Media used *BHIB, brain heart infusion broth (Difco); /3 -NAD, S -nicotinamidoadeninedinucleotide (Sigma Chemical Co.);

CHEMOTHERAPY aureus 0.10, Enterococcus faecalis 3.13, Escherichia coli 0.20, Klebsiella pneumoniae, Enterobacter spp., Serratia marcescens 0.78, Prote

VOL.48 NO.7 lase negative staphylococci, Escherichia coli, Klebsiella spp., Citrobacter freundii, Enterobacter spp., indole-positive Proteus, Serratia

CHEMOTHERAPY Proteus mirabilis GN-79 Escherichia coli No. 35 Proteus vulgaris GN-76 Pseudomonas aeruginosa No. 11 Escherichia coli ML-1410 RGN-823 Kle

日本化学療法学会雑誌第61巻第6号

CHEMOTHERAPY Methicillin-resistant S.aureus(MRSA) coccus epidermidis 105 Streptococcus pyogenes E.faecali senterococcus avium Enterococcus faecium Str

CHEMO THE RAPY OCT. 1994


日本化学療法学会雑誌第64巻第4号

THE JAPANESE JOURNAL OF ANTIBIOTICS 48-8 Enterococcus avium 5Š, Corynebacterium xerosis 10Š, Corynebacterium pseudodiphtheriticum 10Š, Corynebacterium

Streptococcus pneumoniae,streptococcus pyogenes,streptococcus agalactiae,neisseria gonorrhoeae,h.influenzae,moraxella subgenus Branhamella catarrharis


CHEMOTHERAPY

THE JAPANESE JOURNAL OF ANTIBIOTICS ( 37 ) methicillin-susceptible Staphylococcus aureus (MSSA) Escherichia coli levof

Staphylococcus sp. K.pneumoniae P.mirabilis C.freundii E. cloacae Serratia sp. P. aeruginosa ml, Enterococcus avium >100ƒÊg/ml

Staphylococcus epidermidis Streptococcus pneumoniae Staphylococcus epidermidis Streptococcus pneumontae S. epidermidis Table 1. Summary of the organis



Clostridium difficile ciprofloxacin, ofloxacin, norfloxacin Bifidobacterium Lactobacillus Lactobacillus Bacteroides fragilis B. fragilis C. difficile

epidermidis, Enterococcus faecalis, Enterococcus Klebsiella pneumoniae, Proteus mirabilis, indolepositive Proteus spp., Enterobacter spp., Serratia

1272 CHEMOTHERAPY MAR. 1975

CHEMOTHERAPY DEC Table 1 Antibacterial spectra of T-1982, CTT, CMZ, CTX, CPZ and CEZ 106 CFU/ml Note: P; Peptococcus, S; Streptococcus, G; Gaffk



VOL.27 S-3 CHEMO THERAPY mido)-3-[[[1- (2-dimethylaminoethyl)-1H-tetrazol-5-yl] -thio] methyl]-ceph-3-em-4-carboxylic acid dihydro- S. aureus 209-P JC



Table 1. Antibacterial spectrum SBT ABPC ABPC CPZ : sulbactamiampicillin : ampicillin : cefoperazone

02-(a)-Łi’ì™·Łv-4.11

CHEMOTHERAPY



Fig.2. Sensitivity distribution of clinical isolates of S. epidermidis (24 strains, 106 CFU/ml) Staphylococcus aureus Staphylococcus epider- midis Ent


VOL.30 S-1 CHEMOTHERAPY Table 1 Antibacterial activity of CTT against standard strains Table 2 Antibacterial activity of CTT against standard strains

VOL.32 S-7 CHEMOTHERAPY Table 1 MIC of standard strains of CTRX Fig. 2 Cumulative curves of MIC S. aureus (26 strains )

CHEMOTHERAPY JUNE 1993 Table 1. Background of patients in pharmacokinetic study

988 CHEMOTHERAPY NOV. 1971

CHEMOTHERAPY

CHEMOTHERAPY JUN Citrobacter freundii 27, Enterobacter aerogenes 26, Enterobacter cloacae 27, Proteus rettgeri 7, Proteus inconstans 20, Proteus

ヒビスコール液A カタログ

VOL. 23 NO. 3 CHEMOTHERAPY 1067 Table 2 Sensitivity of gram positive cocci isolated from various diagnostic materials Table 3 Sensitivity of gram nega

Fig. 1 Chemical structure of DL-8280

CHEMOTHERAPY NOV Fig. 1 Imipenem (MK-0787) Enterobacter cloacae Enterobacter aero Morganella morganii Pseudo- Acinet ob acter Staphylococcus aur

THE JAPANESE JOURNAL OF ANTIBIOTICS 65 6 Dec DNA 2, , % 1.65% 1.17% 90% 9 Escherichia coli -

CHEMOTHERAPY JUNE 1986

日本化学療法学会雑誌第53巻第S-1号

pneumoniae 30, C. freundii 32, E. aerogenes 27, E. cloacae 32, P. mirabilis 31, P. vulgaris 34, M. morganii 32, S. marcescens 31, H. influenzae 27, P.

CHEMOTHERAPY FEB Table 1. Activity of cefpirome and others against clinical isolates


Table 1. Antimicrobial drugs using for MIC

Table 1. Antibacterial activitiy of grepafloxacin and other antibiotics against clinical isolates

R06_01

CHEMOTHERAPY NOV S. aureus, S. epidermidis, E. coli, K. pgeumoniae, E. cloacae, S. marcescens, P. mirabilis, Proteus, P. aeruginosa Inoculum siz

VOL. 40 S- 1 Table 1. Susceptibility of methicillin-resistant Staphylococcus aureus to meropenem Table 2. Coagulase typing of methicillin-resistant St


日本化学療法学会雑誌第53巻第S-3号


PCG = Benzylpenicillin ABPC= Ampicillin AMPC= Amoxicillin MPIPC = Oxacillin MCIPC = Cloxacillin SBPC= Sulbenicillin PIPC= Piperacillin


CHEMOTHERAPY DEC (NFLX), ofloxacin (OFLX), ciprofloxacin (CPFX) Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterococcus faecali

03-b-„FŒ{›xŒ¾-4.02



CHEMOTHERAPY APR Fig. 1 Chemical structure of cefotetan (CTT, YM09330)

CHEMOTHERAPY 52 MAY d a a. Normal S. aureus d Đg/ml, 2h; e b b Đg/ml, Abnormal e. division lh; Abnormal thickening division cross f c. 1

CHEMOTHERAPY Table 1 Clinical effect of Sultamicillin

VOL.47 NO.5 Table 1. Susceptibility distribution of Ĉ- lactams against clinical isolates of MRSA MRSA: rnethicillin- resistant Staphylococcus aureus

2.7 臨床概要

2 2 THE JAPANESE JOURNAL OF ANTIBIOTICS 69 1 Feb Neisseria gonorrhoeae ceftriaxone CTRX % 2010 CTRX 20 FQ staphylococci, E. faecium, N.

CHEMOTHERAPY Fig. 1 Chemical structure of CXM-AX


coccus aureus Corynebacterium sp, Haemophilus parainfluenzae Klebsiella pneumoniae Pseudornonas aeruginosa Pseudomonas sp., Xanthomonas maltophilia, F

untitled

Table 1. MICs of fosfomycin and other antibiotics determined by agar dilution method against Pseudomonas aeruginosa FOM: fosfomycin, PIPC: piperacilli

日本化学療法学会雑誌第59巻第5号

JUNE 1988

THE JAPANESE JOURNAL OF ANTIBIOTICS 68 3 June 2015 Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis % 2 S. pneumon


VOL.27 S-5 CHEMOTHERAPY Table 1 Clinical evaluations of cefamandole on UTI (1) Benign prostatic hypertrophy (2) Transurethral resection of bladder tum

Key words: E. coli O 157: H7, fosfomycin, verotoxin, mouse infection

Fig. 1 Chemical structure of KW-1070

Oct THE JAPANESE JOURNAL OF ANTIBIOTICS Pseudomonas aeruginosa 186 P. aeruginosa piperacillin PIPC, taz

CHEMOTHERAPY

VOL.42 S-1 methicillin-susceptible Staphylococcus aureus (MSSA), Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, Klebsiella pneum

MIC MIC...

日本化学療法学会雑誌第58巻第4号

Key words: Disinfectants, Gram negative rods, Bactericidal effect P. aeruginosa 1, P. fluorescens 20 P. putida 179, P. cepacia 216 P. maltophilia 227,

dihydrostreptomycin(sm), sulfanilamide(sa), kanamycin(km), paromomycin(prm), fradiomycin(frm), ampicillin(apc), cephaloridine (CER), nalidixic acid(na

VOL. 43 NO. 4

VOL. 33 S-5 CHEMO THERAPY Fig. 1 Chemical structure of HAPA-B 1-N-[ (2 S)-3-Amino-2-hydroxypropiony1]-4- O-(6-amino-6 - deoxy-ƒ -D- glucopyranosyl) -6

Table1MIC of BAY o 9867 against standard strains

第65回日本化学療法学会東日本支部総会 抄録

Shigella flexneri 2a, Shigella flexneri 3a, Shigella sonnei, Salmonella, Salmonella arizonae, Citorobacter freundii, Enterobacter aerogenes, Enterobac

CHEMOTHERAPY APR. 1979

49619, H. influenzae ATCC49247, C. jejuni ATCC 33252, C. fetus ATCC15296, B. fragilis ATCC 25285, C. soldellii ATCC9714, P. rnagnus ATCC lin (ABPC), e

Transcription:

Apr. THE JAPANESE JOURNAL OF ANTIBIOTICS 58 2 105( 1 ) Fosfomycin b- 2004 11 24 fosfomycin (FOM) FOM b- (cefazolin (CEZ), cefotiam (CTM), cefmetazole (CMZ) piperacillin (PIPC)) b - AmpC b- FOM glucose-6-phosphate (G6P) Mueller-Hinton agar (MHA) MHA 22 36 10 15 2 128 G6P nutrient agar (NA) NA 18 28 8 14 2 256 FOM G6P G6P b - 2 G6P Mueller- Hinton broth Escherichia coli, Pseudomonas aeruginosa FOM 4 MIC 2 P. aeruginosa Staphylococcus aureus 1/100 P. aeruginosa PAO1 Enterobacter cloacae ATCC13047 AmpC b - FOM 1/25 1/65 b- b - MIC FOM b - MIC b - MIC P. aeruginosa MexAB-OprM, MexCD-OprJ, MexXY/OprM MexEF-OprN

106( 2 ) THE JAPANESE JOURNAL OF ANTIBIOTICS 58 2 Apr. FOM b- MexAB-OprM MexCD-OprJ FOM AmpC Fosfomycin (FOM) 1) 2) 20 FOM b - 3) FOM 4) FOM FOM 2 sn- -3- (G3P transport system: GlpT system) 5) (sugar phosphate transport system: UhpT system) 6) glucose-6-phosphate (G6P) G6P 7) FOM G6P 8) in vivo in vitro 1975 FOM MIC nutrient agar (NA) FOM 1) NCCLS UhpT system FOM (Mueller- Hinton agar: MHA) G6P 9,10) 11 14) FOM MIC ATCC FOM MIC 4 MIC (MHA) NCCLS (G6P MHA) FOM (NA) FOM NCCLS G6P NA b - FOM AmpC b -

Apr. THE JAPANESE JOURNAL OF ANTIBIOTICS 58 2 107( 3 ) b - MIC FOM I. 1 FOM cefazolin CEZ cefotiam CTM cefmetazole CMZ piperacillin PIPC FOM CEZ CTM CMZ PIPC 2 4 11 18 25 5 5 3 5 ) b - Staphylococcus aureus, S. epidermidis, Streptococcus pyogenes, S. pneumoniae, Enterococcus faecalis, E. faecium, E. hirae, Micrococcus luteus Escherichia coli, Citrobacter freundii Salmonella typhimurium, Shigella flexneri, Klebsiella oxytoca, K. pneumoniae, Enterobacter cloacae E. aerogenes, Serratia marcescens, Proteus mirabilis, P. vulgaris, Morganella morganii, Providencia rettgeri Pseudomonas aeruginosa, Haemophilus influenzae, Burkholderia cepacia Stenotrophomonas maltophilia Acinetobacter calcoaceticus Alcaligenes xylosoxidans A. faecalis, Neisseria gonorrhoeae, N. meningitidis Moraxella catarrhalis Peptostreptococcus anaerobius, Clostridium histolyticum, Finegoldia magna, Collinsella aerofaciens Eggerthella lenta Bacteroides fragilis, B. ovatus, B. thetaiotaomicron, Prevotella bivia, Fusobacterium varium b- S. aureus 15), E. coli 16,17), H. influenzae P. aeruginosa 18) blaz, TEM-1 Toho-1, IMP-1, AmpC, ROB-1 b - isogenic 8 12 P. aeruginosa PAO1 isogenic MexAB-OprM, MexCD-OprJ, MexXY/OprM MexEF-OprN OprD 19) isogenic ampc 3 (MIC) 20) MIC 1) 25 m g/ml G6P (Sigma) MIC 37 C Mueller-Hinton broth (MHB, Difco) 10 6 CFU/mL Mueller- Hinton agar (MHA Difco) ( ) 37 18 MIC MIC ( ) 37 C 1000 NA (Difco) MIC S. pyogenes, S. pneumoniae, M. catarrhalis MIC 5% MHA Neisseria H. influenzae MHA 5%

108( 4 ) THE JAPANESE JOURNAL OF ANTIBIOTICS 58 2 Apr. MHB McFarland 0.5 100 Proteus P. rettgeri M. morganii MHB NB 3.5% Bacto Agar (Difco) GAM ( ) GAM ( ) MIC MIC S. aureus ATCC 29213, S. aureus FDA 209P JC-1, S. pneumoniae ATCC 49619, E. coli ATCC 25922, E. coli NIHJ JC-2, B. thetaiotaomicron ATCC 29741 4. AmpC b - P. aeruginosa PAO1 E. cloacae ATCC 13047 MHA MHB 37 C MHB 20 3 FOM 1, 3, 10, 30, 100 mg/ml 3 CEZ, CTM, CMZ 1, 10, 100 mg/ml, PIPC 0.1, 1, 10 m g/ml (5,600 g, 10 minutes, 4 C) 1/15 M (ph 7.0) b - 80 C 1 ml 1/15 M (ph 7.0) (11,500 g, 60 minutes, 4 C) b - b- cephalothin (CET, Sigma) UV 21) 1 1 mmol 1 unit (unit/mg protein) DC (BioLad) b- 3 mean S.D. 0.1 m g/ml imipenem IPM E. cloacae ATCC 13047 5. S. aureus ATCC 29213 MHA G6P FOM MIC: 1 m g/ml E. coli ATCC 25922 1 m g/ml MHB 10 5 CFU/mL MHB 37 C 2 1/2, 1, 4, 16, 64 MIC FOM 25 mg/ml G6P 1, 2, 4, 6 (CFU/mL) P. aeruginosa MSC-996 32 mg/ml 2 1/2, 1, 4, 16 MIC FOM 25 m g/ml G6P 6. P. aeruginosa MSC-996 4 MIC FOM G6P 2 4 2.5% 1% Spurr EM (TEM; JEM-2000EXII, JEOL) t- (JFD-300, JEOL) (SEM; JSM-6340F, JEOL) 22)

Apr. THE JAPANESE JOURNAL OF ANTIBIOTICS 58 2 109( 5 ) II. 1 MIC 4 FOM MIC Tables 1, 2 MHA G6P 4 11 3 5 NA G6P 3 8 2 5 FOM 2 4 (Table 1) MHA G6P 18 25 7 10 NA G6P 15 20 6 9 FOM 2 128 2 256 (Table 2) FOM (8 256 ) Proteus G6P FOM G6P (Table 3) b - FOM G6P (data not shown) 2 FOM FOM S. aureus ATCC 29213 4 1/100 (Fig. 1A) E. coli ATCC 25922 2 64 MIC 6 16 MIC 2 (Fig. 1B) P. aeruginosa MSC-996 (Fig. 1C) 3 P. aeruginosa FOM 2 P. aeruginosa MSC- 996 SEM (Fig. 2A) (Fig. 2B, C) FOM 4 (Fig. 2D, E) FOM 2 TEM (Fig. 3A) FOM (Fig. 3B, C) FOM 4 (Fig. 3D, E) 4 AmpC b- P. aeruginosa PAO1 E. cloacae ATCC 13047 AmpC b - 0.007 0.004, 0.065 0.013 unit/mg protein P. aeruginosa PAO1 FOM PIPC b - b - CMZ CTM CEZ (Fig. 4A) E. cloacae ATCC 13047 50 130 b - FOM PIPC 2.0, 2.8 (Fig. 4B) 0.1 m g/ml IPM 4.28 0.51 unit/mg protein b- 5 b- E. coli c 1037 b - b - MIC FOM MIC b - MIC NA G6P MIC (Table 4) S. aureus H. influenzae P. aeruginosa b -

110( 6 ) THE JAPANESE JOURNAL OF ANTIBIOTICS 58 2 Apr. Table 1. Drug susceptibility of aerobic Gram-positive bacteria of standard strains.

Apr. THE JAPANESE JOURNAL OF ANTIBIOTICS 58 2 111( 7 ) Table 2. Drug susceptibility of aerobic Gram-negative bacteria of standard strains.

112( 8 ) THE JAPANESE JOURNAL OF ANTIBIOTICS 58 2 Apr. Table 3. Drug susceptibility of anaerobic bacteria of standard strains.

Apr. THE JAPANESE JOURNAL OF ANTIBIOTICS 58 2 113( 9 ) Fig. 1. Bactericidal activity of FOM against S. aureus ATCC 29213 (A) (MIC of FOM: 1 m g/ml), E. coli ATCC 25922 (B) (MIC: 1 m g/ml), and P. aeruginosa MSC-996 (C) (MIC: 32 mg/ml). : control; : 1/2 MIC; : 1 MIC; : 4 MIC; : 16 MIC; : 64 MIC. b - NA G6P FOM MHA 1024 (K. oxytoca GN10650) FOM MIC b- ampc (KG5002, 5004, 5008) MIC b- MexAB-OprM MexCD-OprJ III. 6 P. aeruginosa PAO1 MexAB-OprM, MexCD- OprJ MexXY/OprM FOM MIC PAO1 (Table 5) P. aeruginosa PAO4222 MexEF-OprN KG4001 FOM MIC PAO4222 (MHA 128 m g/ml) FOM MexEF-OprN (data not shown) isogenic ampc FOM AmpC b - FOM 1980 2,23) 2003 FOM fosfomycin tromethamine 24) 25) FOM FOM UDP- GlcNAc 3) FOM G6P FOM

114( 10 ) THE JAPANESE JOURNAL OF ANTIBIOTICS 58 2 Apr. Fig. 2. Scanning electron micrographs illustrating morphological changes in P. aeruginosa MSC-996 after treatment with FOM at four times the MIC. A: control; B and C: 2 hours after treatment; D and E: 4 hours after treatment. Bars indicate 200 nm. FOM MIC 5 mg/ml G6P S. aureus, E.coli, Shigella MIC 1) TSUBOI 40 G6P 4.0 1.0 m g/ml 8) NCCLS G6P (25 mg/ml) 9) FOM NA G6P MIC 2 (B. cepacia, A. xylosoxidans) 32 mg/ml MHA MIC in vivo 26) MHA MIC in vivo 27) FOM (BP) MHA 25mg/mL G6P 64 mg/ml 28) FOM

Apr. THE JAPANESE JOURNAL OF ANTIBIOTICS 58 2 115( 11 ) Fig. 3. Transmission electron micrographs illustrating morphological changes in P. aeruginosa MSC-996 after treatment with FOM at four times the MIC. A: control; B and C: 2 hours after treatment; D and E: 4 hours after treatment. Bars indicate 200 nm. MIC BP 4 FOM MIC 4 BP BP FOM BARRY A. fosfomycin tromethamine E. coli, Citrobacter spp., Klebsiella spp., Enterobacter spp. G6P 29) Staphylococcus spp. Enterococcus spp. Pseudomonas spp. S. marcescens G6P FOM 4 G6P b -

116( 12 ) THE JAPANESE JOURNAL OF ANTIBIOTICS 58 2 Apr. Fig. 4. AmpC b -lactamase expression in P. aeruginosa PAO1 (A) and E. cloacae ATCC 13047 (B) induced by FOM, CEZ, CTM, CMZ, and PIPC. Data were expressed as mean S.D. of three independent experiments. : FOM; : CEZ; : CTM; : CMZ; : PIPC. P. aeruginosa PAO1 E. cloacae ATCC13047 AmpC b- FOM 2 REGUERA J.A. b - cefoxitin 12.5 b - FOM 2.5 30,31) b- b - FOM (GlpT UhpT ) (mura ) FOM ( fosa fosb fosc) 23) 4 MexAB-OprM MexCD-OprJ MexXY/OprM MexEF-OprN 19) FOM FOM MIC b - MexAB-OprM MexCD-OprJ 32) b- 33) 1980

Apr. THE JAPANESE JOURNAL OF ANTIBIOTICS 58 2 117( 13 ) Table 4. Drug susceptibility of isogenic mutants carrying b-lactamase coded plasmid and clinical isolates.

118( 14 ) THE JAPANESE JOURNAL OF ANTIBIOTICS 58 2 Apr. Table 5. Drug susceptibility of isogenic efflux mutants of P. aeruginosa PAO1.

Apr. THE JAPANESE JOURNAL OF ANTIBIOTICS 58 2 119( 15 ) MRSA 1999 (Centers for Disease Control and Prevention: CDC) surgical site infection (SSI) 13) Class II/Clean-Contaminated operation Class I/Clean operation 11,12) ampicillin (ABPC) CEZ FOM FOM CMZ flomoxef b - FOM clindamycin FOM S. aureus, E. coli, K. pneumoniae, Proteus spp. Enterococcus spp., P. aeruginosa Bacteroides. spp. 11 14) 5 FOM 1g 1.5 34) 11) 35) FOM 1 g 1 2 4 37.2 12.0, 18.3 6.1 mg/ml 34) 5 36) G6P 3 FOM MIC 100, 230 FOM 0.56% FOM 3 FOM 5 (0.005%) 2) E. coli CEZ MIC 128 m g/ml 37) 38) 11) FOM FOM MIC b - b - FOM b -

120( 16 ) THE JAPANESE JOURNAL OF ANTIBIOTICS 58 2 Apr. FOM 1) Fosfomycin in vitro, in vivo Chemotherapy 23: 1653 1661, 1975 2) fosfomycin sodium 10 prospective 48: 851 874, 1997 3) KAHAN, F. M.; J. S. KAHAN, P. J. CASSODY, et al.: The mechanism of action of fosfomycin (phosphonomycin). Ann. N.Y. Acad. Sci. 235: 364 386, 1974 4) Escherichia coli Pseudomonas aeruginosa Staphylococcus aureus Fosfomycin Jpn. J. Antibiotics 48: 1935 1938, 1995 5) KOCH, J. P.; S. HAYASHI & E. C. C. LIN: The control of dissimilation of glycerol and L-a -glycerophosphate in Escherichia coli. J. Biol. Chem. 239: 3106 3108, 1964 6) WESTON, L. A. & R. J. KADNER: Identification of Uhp polypeptides and evidence for their role in exogenous induction of the sugar phosphate transport system of Escherichia coli K-12. J. Bacteriol. 169: 3564 3555, 1987 7) WINKLER, H. H.: Compartmentation in the induction of the hexose-6-phosphate transport system of Escherichia coli. J. Bacteriol. 101: 470 475, 1970 8) TSUBOI, I.; H. IDA, E. YOSHIKAWA, et al.: Antibiotic susceptibility of enterohemorrhagic Eschericia coli O157:H7 isolated from an outbreak in Japan in 1996. Antimicrob. Agents Chemother. 42: 431 432, 1998 9) National Committee for Clinical Laboratory Standards. : Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard M7- A5. National Committee for Clinical Laboratory Standards, Wayne PA., 2000 10) ANDREWS, J. M.; F. BAQUERO, J. M. BELTRAN, et al.: International collaborative study on standardization of bacterial sensitivity to fosfomycin. J. Antimicrob. Chemother. 12: 357 361, 1983 11)Jpn. J. Antibiotics 57: 11 32, 2004 12) 49 (S-B): 71 89, 2001 13) MANGRAM, A. J.; T. C. HORAN, M. L. PEARSON, et al.: Guideline for prevention of surgical site infection. Infect. Control Hosp. Epidemiol. 20: 247 278, 1999 14) (1997 ) 45: 553 641, 1997 15) SHALITA, Z.; E. MURPHY & R. P. NOVICK: Penicillinase plasmids of Staphylococcus aureus: structural and evolutionary relationships. Plasmid 3: 291 311, 1980 16) ISHII, Y.; A. OHNO, H. TAGUCHI, et al.: Cloning and sequence of the gene encoding a cefotaxime-hydrolyzing class A beta-lactamase isolated from Escherichia coli. Antimicrob. Agents Chemother. 39: 2269 2275, 1995 17) KUGA, A.; R. OKAMOTO & M. INOUE: ampr gene mutations that greatly increase class C beta-lactamase activity in Enterobacter cloacae. Antimicrob. Agents Chemother. 44: 561 567, 2000 18) IYOBE, S.; M. TSUNODA & S. MITSUHASHI: Clonig and expression in Enterobacteriaceae of the extende-spectrum beta-lactamase gene from a Pseudomonas aeruginosa plasmid. FEMS Microbiol. Lett. 121: 175 180, 1994 19) OKAMOTO, K.; N. GOTOH & T. NISHINO: Alterations of susceptibility of Pseudomonas aeruginosa by overproduction of multidrug efflux systems, MexAB-OprM, MexCD-OprJ, and MexXY/OprM to carbapenems: substarte specificities of the efflux systems. J. Infect. Chemother. 8: 371 373, 2002 20) MIC Chemotherapy 29: 76 79, 1981 21) WALEY, S. G.: A spectrophotometric assay of betalactamase action on penicillins. Biochem. J. 139: 789 790, 1974 22) YAMADA, S.; M, SUGAI, H. KOMATSUZAWA, et al.: An auto lysin ring associated with cell separation of Staphylococcus aureus. J. Bacteriol. 178: 1565 1571, 1996 23) Fosfomycin 47: 115 128, 1999 24) BELLA, D. D. & V. FERRARI: Monuril: historical background. In New Trends in Urinary Tract Infections. Int. Symp., Rome 1987 (NEU H.C., WILLIAMS J.D. ed.), pp. 116 120, Karger, Basel, 1988 25) SCHITO, G. C.: Why fosfomycin trometamol as first line therapy for uncomplicated UTI? Int. J. Antimicrob. Agents 22 (S-2): 79 83, 2003 26) HAGG, R.; W. VOMEL & W. SCHAUMANN: Comparioson of in vitro methods for the determination of the activity of fosfomycin with the efficacy determined in experimentally infected mice. Immun. Infekt. 9: 177 182, 1981 27) INOUE, S.; T. WATANABE, T. TSURUOKA, et al.: An increase in the antimicrobial activity in vitro of fosfomycin under

Apr. THE JAPANESE JOURNAL OF ANTIBIOTICS 58 2 121( 17 ) anaerobic condition. J. Antimicrob. Chemother. 24: 657 666, 1989 28) GILBERT, D. N.; R. C. MOELLERING, Jr., G. M. ELIOPOULOS, et al.: The Sanford Guide to Antimicrobial Therapy 34 th edition, 2004, Antimicrobiology Therapy, Inc. Hyde Park, Vt, USA 29) BARRY, A. & P. C. FUSHS: In vitro susceptibility testing procedures for fosfomycin tromethamine. Antimicrob. Agents Chemother. 35: 1235 1238, 1991 30) REGUERA, J. A.; F. BAQUERO, J. BERENGUER, et al.: b -Lactam-fosfomycin antagonism involving modification of penicillin-binding protein 3 in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 34: 2093 2096, 1990 31) SUN, D.; S. COHUN, N. MANI, et al.: A pathway-specific cell based screening system to detect bacterial cell wall inhibitors. J. Antibiotics 55: 279 287, 2002 32) MASUDA, N.; E. SAKAGAWA, S. OHYA, et al.: Substrate specifities of MexAB-OprM, MexCD-OprJ, and MexXY- OprM efflux pumps in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 44: 3322 3327, 2000 33) NAKAE, T.; A. NAKAJIMA, T. ONO, et al.: Resistance to b -lactam antibiotics in Pseudomonas aeruginosa due to interplay between the MexAB-OprM efflux pump and b -lactamase. Antimicrob. Agents Chemother. 43: 1301 1303, 1999 34) Fosfomycin-Na Jpn. J. Antibiotics 31: 549 560, 1978 35) OHGE, H.; Y. TAKESUE, T. YOKOYAMA, et al.: An additional dose of cefazolin for intraoperative prophylaxis. Surg. Today 29: 1233 1236, 1999 36)Fosfomycin ( ) Chemotherapy 23: 3389 3395, 1975 37) 2002 Jpn. J. Antibiotics 57: 33 69, 2004 38) 27: 2358 2367, 1994 ANTIMICROBIAL ACTIVITY OF FOSFOMYCIN UNDER VARIOUS CONDITIONS AGAINST STANDARD STRAINS, b -LACTAM RESISTANT STRAINS, AND MULTIDRUG EFFLUX SYSTEM MUTANTS TAKESHI MIKUNIYA, TORU HIRAISHI, KAZUNORI MAEBASHI, TAKASHI IDA, TOSHIHIKO TAKATA and MUNEO HIKIDA Infectious Disease Research Laboratories, Meiji Seika Kaisha, LTD., 760 Morooka-cho, Kohoku-ku, Yokohama 222 8567, Japan SAKUO YAMADA Department of Microbiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701 0192, Japan NAOMASA GOTOH and TAKESHI NISHINO Department of Microbiology, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto 607 8414, Japan The purpose of this study was to evaluate the possible benefit of fosfomycin (FOM) as prophylactic antibiotic in terms of antimicrobial activity and the potential of inducibility of b -lactamase, compared with cefazolin, cefotiam, cefmetazole, and piperacillin that are commonly used as perioperative agents. The in vitro activity of FOM against aerobic Gram-negative bacteria using Mueller-Hinton agar or nutrient agar supplemented with glu-

122( 18 ) THE JAPANESE JOURNAL OF ANTIBIOTICS 58 2 Apr. cose-6-phosphate (G6P) as tested medium increased within a range from 2 to 256 times the activity in the medium without G6P. However, the susceptibility of Gram-positive bacteria to FOM remained largely unchanged with or without G6P. There was no aerobic- or anaerobic-bacteria which changed susceptibility against b -lactam antibiotics under various tested medium conditions. FOM demonstrated strong bactericidal activity against Escherichia coli and Pseudomonas aeruginosa in a dose dependent manner, and decreased viable cell counts of Staphylococcus aureus. In the case of P. aeruginosa, transmission electron micrographs study revealed that numerous lysed cells were present 2 hours after treatment with FOM at four times the MIC. First and second generation cephalosporins induced AmpC-type b -lactamase in a dose dependent manner among b -lactamase inducible strains of P. aeruginosa and Enterobacter cloacae. On the other hand, inducible activity of FOM on b -lactamase production was less than 1/25 to 1/65 compared with those of cephalosporins. In addition, FOM maintained strong antimicrobial activity for over then 20 years after marketing, because of the excellent stability against various types of b -lactamase produced by plasmid-carrying bacteria and clinical isolates. FOM was not extruded by four types of efflux systems, such as MexAB-OprM, MexCD-OprJ, MexXY/ OprM and MexEF-OprN, however b -lactam antibiotics were substrates of MexAB-OprM and MexCD-OprJ. In conclusion, FOM provides adequate coverage for both aerobic Gram-positive and Gram-negative bacteria causing postoperative infections. Further, FOM would not select/concentrate b -lactamase producing bacteria in the clinical fields and would not be a substrate for multidrug efflux system of P. aeruginosa.