Similar documents
2 豊橋創造大学紀要第 17 号 テストの信頼性は, 測定の対象がたとえば血清中のNa 濃度のように検体として取り出せるものであれば, 標準となる試料を用意し, 何回か測定を繰り返して得られた一連の測定値のばらつきの大小によって評価することができる. しかし, 筋力テストのように人間を対象として測定

[ ]

Part () () Γ Part ,

統計学のポイント整理

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

読めば必ずわかる 分散分析の基礎 第2版

10:30 12:00 P.G. vs vs vs 2

2 Part A B C A > B > C (0) 90, 69, 61, 68, 6, 77, 75, 20, 41, 34 (1) 8, 56, 16, 50, 43, 66, 44, 77, 55, 48 (2) 92, 74, 56, 81, 84, 86, 1, 27,

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

応用数学III-4.ppt

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

II Time-stamp: <05/09/30 17:14:06 waki> ii

Myers, Montgomery & Anderson-Cook (2009) Response Surface Methodology

waseda2010a-jukaiki1-main.dvi


5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

newmain.dvi

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

stat2_slides-13.key

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

chap10.dvi

151021slide.dvi

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

linearal1.dvi

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

PDF

note4.dvi

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

untitled

ver Web


201711grade1ouyou.pdf

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

基礎数学I

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

確率論と統計学の資料

untitled

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence


) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

all.dvi

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99

日本内科学会雑誌第102巻第12号

keisoku01.dvi

6.1 (P (P (P (P (P (P (, P (, P.

Newgarten, BL., Havighrst, RJ., & Tobin, S.Life Satisfaction Index-A LSIDiener. E.,Emmons,R.A.,Larsen,R.J.,&Griffin,S. The Satisfaction With Life Scal

²�ËÜËܤǻþ·ÏÎó²òÀÏÊÙ¶¯²ñ - Â裱¾Ï¤ÈÂ裲¾ÏÁ°È¾

chap9.dvi

BayesfiI‡É“ÅfiK‡È−w‘K‡Ì‡½‡ß‡ÌChow-Liu…A…‰…S…−…Y…•

?


I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

seminar0220a.dvi

2000年度『数学展望 I』講義録

研究シリーズ第40号

untitled

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

6.1 (P (P (P (P (P (P (, P (, P.101

日本統計学会誌, 第44巻, 第2号, 251頁-270頁

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

bc0710_010_015.indd

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

st.dvi

( )


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

PSCHG000.PS

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +


koji07-01.dvi

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

yamadaiR(cEFA).pdf

L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P

スケーリング理論とはなにか? - --尺度を変えて見えること--

II III II 1 III ( ) [2] [3] [1] 1 1:

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

The Physics of Atmospheres CAPTER :

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

i

ii

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

L Y L( ) Y0.15Y 0.03L 0.01L 6% L=(10.15)Y 108.5Y 6%1 Y y p L ( 19 ) [1990] [1988] 1

理学療法検査技術習得に向けた客観的臨床能力試験(OSCE)の試行


solutionJIS.dvi

Transcription:

1 1 1 1.1.............................................. 1 1.2............................................ 1 1.2.1..................................... 1 1.2.2..................................... 2 1.2.3..................................... 4 1.2.4......................... 4 1.2.5...................................... 5 1.2.6.......................................... 5 1.2.7................................... 6 1.3 ICC...................................... 8 1.3.1 Case1........................................... 9 1.3.2 Case2........................................... 10 1.3.3 Case3........................................... 12 1.4 ICC......................................... 15 1.4.1 ICC11 ICC21 ICC31.............. 15 1.4.2 Case1 Case2.................................. 15 1.4.3 ICC...................................... 15 1.4.4............................. 16 1.4.5..................................... 16 1.4.6...................................... 17 1.5............................... 18 1.5.1....................................... 18 1.5.2...................................... 20 1.5.3...................... 20 1.6......................................... 23 1.6.1........................... 23 1.6.2....................................... 25 1.6.3...................................... 26

1 1 1.1 Intraclass correlation coefficients ICC a ICC ICC ICC [1] [2] Fisher [3] ICC Shrout [4] ICC 3 6 Shrout [5][6][7][8] [9] Shrout ICC 3 Case1Case2Case3 6 ICCn1 ICCn k n 123 ICC 6 Bartko [10] ICC One-way ClassificationTwo-way Random ModelTwo-way Mixed Model 3 Case1Case2Case3 Bartko [11] ICC1 ICC2 Two-wayWiner s anchor poin ICC 1.2 1.2.1 ICC [ ] 1. 2. 3. 1. 2. 2. 3. ICC a item characteristic curve) ICC ICC

2 1 1.2.2 classical test theory 1950 item response theoryirt 1950 1.2.2.1 test-retest method test-retest reliability 0 b 1.2.2.2 parallel test method parallel form reliability strongly parallel measurement weakly parallel measurement Cronbach α [1.2.2.4 ] ICC31 1.2.2.3 split-half method 2 2 2 2 odd-even method Spearman-Brown Kuder-Richerdson 20KR-20 Kuder-Richerdson 21KR-21 2 0-1 KR-20 KR-21 1.2.2.4 α Cronbach s coefficient alpha Cronbach α α c A n n b c

1.2. 3 ICC3k α X i T i E i 2 1) 0 E(E i ) 0 (2.1) µ(x) E(X i ) E(T i + E i ) E(T i )+E(E i ) µ(t ) (2.2) 2) Cov(T E) ρ(t E) 0 (2.3) σ 2 (X) Var(T )+Var(E)+2Cov(T,E) Var(T )+Var(E) (2.4) ρ ρ(x) = Var(T ) Var(X) (2.5) Spearman-Brown 2 2 X 1 X 2 T 1 T 2 E 1 E 2 X 1 X 2 X X 1 + X 2 /2 T T 1 + T 2 /2 T 1 T 2 Var(X 1 )=Var(X 2 ) (2.6) Var(T 1 )=Var(T 2 ) (2.7) X 1 (= (X 11 X 12 X 1i ))X 2 (= (X 21 X 22 X 2i )) CovX 1 X 2 = E X 1i µ(x 1 ) X 2i µ(x 2 ) = E T µ(t )+E 1i T µ(t )+E2i = E T µ(t ) 2 + E T µ(t ) E2i + E E1i T µ(t ) + E E1i E 2i = Var(T ) (2.8) ρ(x 1,X 2 ) Cov(X 1,X 2 ) Var(X 1 )Var(X 2 ) = Cov(X 1,X 2 ) 2Var(X 1 ) (2.9)

4 1 2.5 ρ(x) = Var(T ) Var(X) Var(T 1 + T 2 ) Var(X 1 + X 2 ) = Var(T 1)+Var(T 2 )+2Cov(T 1,T 2 ) Var(X 1 )+Var(X 2 )+2Cov(X 1,X 2 ) = 2Var(T 1)+2Cov(T 1,T 2 ) 2Var(X 1 )+2Cov(X 1,X 2 ) = 4Var(T 1 ) 2Var(X 1 )[1 + ρ(x 1,X 2 )] = 2 2Cov(X 1,X 2 ) 2Var(X 1 )[1 + ρ(x 1,X 2 )] = 2ρ(X 1,X 2 ) 1+ρ(X 1,X 2 ) = 2ρ(X 1 ) 1+ρ(X 1 ) (2.10) 2.10 Spearman-Brown 1.2.3 generalizability theory [2] ICC G generalizability study D decision study A A G ICC11 ICC21 ICC 31 G A A D D ICC1k ICC2k ICC3k D G A D 1.2.4 fixed model random effect model mixed model

1.2. 5 d e 2 f 2 A B C 1.2.5 ICC i j x ij i 1 2 nj 1 2 m x 11 x 21 x nm x i x 2 x ij x 2 x i x+x ij x i 2 x ij x i x+x ij x i (2.11) x ij x 2 x i x 2 +x ij x i 2 +2 x i xx ij x i nx mx nx nx mx nx mx x ij x 2 x i x 2 + x ij x i 2 + 2 x i xx ij x i (2.12) i=1 j=1 i=1 i=1 j=1 i=1 j=1 2.11 i i 0 g 2.12 3 0 nx i=1 j=1 mx nx x ij x 2 x i x 2 + i=1 nx i=1 j=1 [ 1.2.2 ] mx x ij x i 2 (2.13) 1.2.6 Case2 Case3 1.1 d e f g x i x x ij i 0

6 1 1.1 1.1 a. A B A B b. c. A B 1 A 2 B BA AB 1.2.7 ICC ICC 1.1 ICC 1.1 [4] df M S n 1 BMS kσt 2 + σ2 W kσt 2 + σ2 I + σ2 E kσt 2 + σ2 E n(k 1) WMS σw 2 σj 2 + σ2 I + σ2 E θj 2 + fσ2 I + σ2 E (k 1) JMS nσj 2 + σ2 I + σ2 E nθj 2 + fσ2 I + σ2 E (n 1)(k 1) EMS σi 2 + σ2 E fσi 2 + σ2 E P f k/(k 1) θ2 J a 2 i /k 1 n k 1.1 2 MS BMSWMSJMSEMS ICC 3

1.2. 7 f θ 1.1 [ ] h Bartko [10] 1.1 h EMS θ J 2 σ2 J σ2 I f

8 1 1.3 ICC ICC Case123 2 6 6 Case 1.2 1.2 a. Case1 1.2 b. Case2 2 a. ICC Case1 ICC Case2b. c. ICC Case3

1.3. ICC 9 1.2 c. Case3 Case2 i Case2 Case3 A B C Case3 3 3 Case3 A a b a 85 b 75 a b 10 Case3 Case2 1.3.1 Case1 1 Intra-rater reliability Case1 1.1 ICC11 ICC1k 1 r k x ij x ij µ + T i + W ij (3.14) µ T i i W ij ij i12 rj12 k σx 2 σ2 T + σw 2 (3.15) σt 2 + σ2 W σ2 T ρ σ2 T σ 2 T + σ2 W (3.16) 3.16 ICC11 1.1 BMS WMS Case1 BMSWMS BMS kσ 2 T + σ 2 W (3.17) WMS σ 2 W (3.18) 3.17 3.18 σt 2 BMS WMS] /k 3.16 i BMS WMS ICC1 /k BMS WMS /k + WMS

10 1 BMS WMS BMS WMS + kwms BMS WMS ICC1 BMS +k 1WMS (3.19) A ICC11 A 1 r m x 11 ( x 111 + x 112 ++ x 11 m )/m 3.16 ρ σ2 T σt 2 + σ2 W /k (3.20) 3.20 3.16 2 σw 2 /k k 3.20 ICC1k 3.17 3.18 3.20 BMS WMS ICC1 k BMS (3.21) 1.4.4 [4] ICC11 100(1 α) j F 0 F U BMS/WMS F 0 F 1 α/2n(k 1)n 1 F L = F 0 /F 1 α/2n 1n(k 1) F L 1 F L +(k 1) ρ ICC(1,1) F U 1 (3.22) F U +(k 1) F 1 α/2nk 1 n 1 α0.05 df 1=nk 1 df 2 n 1 1 0.05/2 0.975 F ICC1k 100(1 α) 1 1 F L ρ ICC(1,k) 1 1 F U (3.23) 1.3.2 Case2 Inter-rater reliability Case2 Case3 [1.2.4 ] Case2 ICC21 ICC2 k k n Case1 x ij µ + T i + J j + I ij + E ij (3.24) j 1 1 [13]

1.3. ICC 11 µ T i i J j j I ij E ij i j i 1 2 nj 1 2 k 3.14 J j I ij J j I ij A a b c B a b c C a b c C Case1 σt 2 σ 2 T ρ σt 2 + σ2 J + σ2 I + σ2 E (3.25) ICC21 1.1 BMS kσ 2 T + σ 2 I + σ 2 E (3.26) JMS nσ 2 J + σ 2 I + σ 2 E (3.27) EMS σ 2 I + σ 2 E (3.28) σ 2 T σ 2 J BMS EMS /k (3.29) JMS EMS /n (3.30) 3.25 BMS EMS /k ICC2 1 BMS EMS /k +JMS EMS /n + EMS BMS EMS BMS EMS + k JMS EMS /n + kems BMS EMS ICC2 1 BMS +k 1EMS + k JMS EMS /n (3.31) Case1 A k n m 3.25 σ 2 T ICC2 k σt 2 +σ2 J + σ2 I + σ2 E /k BMS EMS /k BMS EMS /k +JMS EMS /n + EMS /k BMS EMS ICC2 k BMS +JMS EMS /n (3.32) ICC21 100(1 α) ˆρ ICC2 1

12 1 F J ν F JMS/EMS (k 1)(n 1)kˆρF J + n[1 + (k 1)ˆρ] kˆρ 2 (n 1)k 2 ˆρ 2 FJ 2 +n[1 + (k 1)ˆρ] kˆρ 2 F 1 α/2 (n 1) ν F = F 1 α/2 ν (n 1) n(bms F EMS) F [kjms +(kn k n)ems]+nbms ρ n(f BMS EMS) ICC(2,1) kjms +(kn k n)ems + nf BMS (3.33) ICC2k 100(1 α) ρ L = ρ U = kρ L 1+(k 1)ρ L kρ U 1+(k 1)ρ U (3.34) (3.35) ρ ρ L ρ ICC(2,k) ρ U (3.36) 3.34 3.35 L ρ U 3.33 ICC21 1.3.3 Case3 ICC21 ICC2k [1.2.4 ] ICC31 ICC3k 3.24 ρ σ2 T σ2 I /k 1 σt 2 + σ2 I + σ2 E 3.37 σt 2 σ2 I /k 1 σj 2 k 1.3 Case1Case2 1.1 BMSEMS (3.37) σt 2 (BMS σ E 2 )/k (3.38) σi 2 (k 1)(EMS σe)/k 2 (3.39) 3.37 ICC31 ICC3 1 (BMS σ2 E )/k (k 1)(EMS σ2 E )/k1/k 1 (BMS σ E 2 )/k +(k 1)(EMS σ2 E )/k + σ2 E BMS σ2 E EMS + σ2 E BMS σe 2 +(k 1)(EMS σ2 E )+k σ2 E BMS EMS ICC3 1 BMS +k 1EMS (3.40) k σi 2 0

1.3. ICC 13 Case1Case2 m ICC3k 3.37 σ2 T ρ σt 2 + σ2 E /k (3.41) 1.1 /k 1 σ 2 I BMS kσ 2 T + σ 2 E (3.42) EMS σ 2 E (3.43) a a b b a a 2 2 b 2 b + 1.3 3.41 BMS EMS ICC3 k BMS ICC31 (3.44) F 0 BMS/EMS (3.45) F L F 0 /F 1 α/2 (n 1),(n 1)(k 1) (3.46) F U = F 0 F 1 α/2 (n 1)(k 1),(n 1) (3.47)

14 1 F L 1 F L +(k 1) ρ ICC(3,1) F U 1 F U +(k 1) ICC3k (3.48) 1 1 F L ρ ICC(3,k) 1 1 F U (3.49) k n [ ] I ij V ( kx j=1 I ij ) kv (I ij )+kk 1COV (I ij I i0 j) (3.50) 3.50 0 V (I ij ) V (I i0 j) i i 0 COV (I ij I i0 j)=v (I ij ) COV (I ij I i0 j)= σi 2 /k 1 3.37 Bartko [10] 3.37 σ2 T ρ σt 2 + σ2 I + σ2 E (3.51) 1.1 EMS EMS σ I 2 + σ2 E EMS BMS 3.51 ICC3 1 BMS EMS + σ2 I BMS +k 1EMS + σi 2 (3.52) ICC3 1 BMS EMS = BMS +k 1EMS (3.53) 3.40 EMS σi 2 EMS σ2 I ICC3 1 BMS BMS + kems (3.54) ICC31 3.53 ICC3 1 3.54

1.4. ICC 15 1.4 ICC 1.4.1 ICC11 ICC21 ICC31 ICC11 ICC21 ICC31 ICC11 ICC21 ICC31 [8] 0 ICC11 ICC21 ICC Case Case 1.4.2 Case1 Case2 Case1 [1.3.1 ] [4] [8] ICC(11) ICC21 ICC11 BMS BMS kσt 2 + σw 2 3.17 ICC21 BMS BMS kσt 2 + σi 2 + σe 2 3.26 σw 2 1.1 σw 2 σ2 J + σi 2 + σe 2 (4.55) 3.30 3.28 ICC21 BMS ICC11 σt 2 σ 2 T BMS ([JMS EMS]/n + EMS) = BMS EMS (JMS EMS/n) (4.56) (4.55) (4.56) ICC11 σt 2 ICC(1 1) σ2 J σt 2 + σ2 J + σ2 I + σ2 E σ2 J (4.57) ICC21 σj 2 (= (JMS EMS)/n) ICC11 l ICC1 1 1.4.3 ICC ICC 1.2 Landis [12] Kappa ICC l

16 1 [6] [9] ICC 0.7 ICC ICC 1.2 [12] ICC 0.0 0.20 slight 0.21 0.40 fair 0.41 0.60 moderate 0.61 0.80 substantial 0.81 1.00 almost perfect 1.4.4 D ICCn kn =1, 2, 3 ICC11 0.7 0.9 m k ρ 11 ρ 2 ρ 2 1 ρ 1 (4.58) ρ 1 ρ 2 0.9 k 1 0.7 3.8571 (4.59) 0.7 1 0.9 4 4 Eliasziw [13] 1.4.5 ICC Eliasziw [13] n H 0 ρ0 0 1.2 H 0 ρ 0.6 sabstantial m Spearman-Brown [1.2.2 ] n

1.4. ICC 17 1.4.6 SEM ICC Case SEM SEM q SEM σtotal 2 (1 ρ) (4.60) σtotal 2 ICC11 SEM 1 SEM1 2 σ2 W WMS (4.61) ICC12 ICC13 SEM 2 SEM 3 SEM2 2 = σj 2 + σi 2 + σe 2 JMS EMS /n + EMS (4.62) SEM3 2 = σi 2 + σe 2 EMS (4.63) SEM Stratford [14] SEM " # WMS WMS, (4.64) χ 2 χ 2 α/2,df1 α/2,df χ 2 α,df df α/2 χ2 2 SEM SEM A SEM B H 0 2 df A df B F F df Adf B SEMA 2 /SEM B 2

18 1 1.5 ICC ICC ICC 1.5.1 Case2 T i N(0, σt 2 ),J jn(0, σj 2) I ijn(0, σi 2),E ijn(0, σe 2 ) 3.14 3.24 A k n k ICC ICC21 J j T i X (x 11 x 12 x ij )(i =1, 2,,nj =1, 2,,k) x ij µ + T i + J j +(TJ) ij + e ij (5.65) (TJ) ij µ 0XN(µ X σx 2 ) X x n1 x n2 x nk k k 5 10 20 i i 10 30 r 0.0 0.5 0.9 r k k R R AA t A n k DN0 1 A t D X ICC21 1,000 1.4 n k ricc 0 Fisher [3]Shrout [4] o ICC ICC 0 ICC 1 o Fisher + 1 n0 log 2 n 0 1 + 1 2n 0 1 n0 n +2

1.5. 19 k=5 n20 r0 n20 r0.5 n20 r0.9 n20 r0 n20 r0.5 n20 r0.9 n10 r0 n10 r0.5 n10 r0.9 n20 r0 n20 r0.5 n20 r0.9 n30 r0 n30 r0.5 n30 r0.9 k=10 n10 r0 n10 r0.5 n10 r0.9 n30 r0 n30 r0.5 n30 r0.9 k=20 n10 r0 n10 r0.5 n10 r0.9 n30 r0 n30 r0.5 n30 r0.9 1.4 ICC21

20 1 a. r0 95 b. r0.5 95 c. r0.9 95 1.5 ICC21 95 1.5.2 1.3 1.5.1 1.5.1 X A t X ICC21 95 k 5n 20 r 00.50.9 r 100 1.5 Eliasziw [13] 1 1.5.3 ICC ICC 1.6 ICC11 ICC21 ICC31 1.6-a. AD ad ICC 1 b. A d +2 ICC A d +2 1.6-c.

1.5. 21 k 4 n 4 A B C D ICC(1,1)= 1.0000 a 1 1 1 1 1 ICC(2,1)= 1.0000 b 2 2 2 2 2 ICC(3,1)= 1.0000 c 3 3 3 3 3 SEM1= d 4 4 4 4 4 SEM2= 2.5 2.5 2.5 2.5 2.5 SEM3= A B C D ICC(1,1)= 0.9684 a 1 1 1 1 1 ICC(2,1)= 0.9684 b 2 2 2 2 2 ICC(3,1)= 0.9684 c 3 3 3 3 3 SEM1= d 5 4 4 4 4.25 SEM2= 2.75 2.5 2.5 2.5 2.5625 SEM3= A B C D ICC(1,1)= 0.9684 A B C D ICC(1,1)= 0.9684 a 11 11 11 11 11 ICC(2,1)= 0.9684 a 110 110 110 110 110 ICC(2,1)= 0.9684 b 12 12 12 12 12 ICC(3,1)= 0.9684 b 120 120 120 120 120 ICC(3,1)= 0.9684 c 13 13 13 13 13 SEM1= c 130 130 130 130 130 SEM1= d 15 14 14 14 14.25 SEM2= d 150 140 140 140 142.5 SEM2= 12.75 12.5 12.5 12.5 12.563 SEM3= 127.5 125 125 125 125.63 SEM3= A B C D ICC(1,1)= 0.4286 A B C D ICC(1,1)= 0.4286 a 11 10 9 8 9.5 ICC(2,1)= 0.5000 a 110 100 90 80 95 ICC(2,1)= 0.5000 b 12 11 10 9 10.5 ICC(3,1)= 1.0000 b 120 110 100 90 105 ICC(3,1)= 1.0000 c 13 12 11 10 11.5 SEM1= c 130 120 110 100 115 SEM1= d 14 13 12 11 12.5 SEM2= d 140 130 120 110 125 SEM2= 12.5 11.5 10.5 9.5 11 SEM3= 125 115 105 95 110 SEM3= A B C D ICC(1,1)= - A B C D ICC(1,1)= -0.2698 a 110 90 70 50 80 ICC(2,1)= 0.2000 a 110 90 70 50 80 ICC(2,1)= 0.0361 b 120 100 80 60 90 ICC(3,1)= 1.0000 b 110 90 70 50 80 ICC(3,1)= 1.0000 c 130 110 90 70 100 SEM1= c 110 90 70 50 80 SEM1= d 140 120 100 80 110 SEM2= d 120 100 80 60 90 SEM2= 125 105 85 65 95 SEM3= 112.5 92.5 72.5 52.5 82.5 SEM3= A B C D ICC(1,1)= -0.3169 A B C D ICC(1,1)= -0.1111 a 110 90 70 50 80 ICC(2,1)= 0.0093 a 110 111 112 113 111.5 ICC(2,1)= 0.1304 b 110 90 70 50 80 ICC(3,1)= 1.0000 b 110 111 112 113 111.5 ICC(3,1)= 1.0000 c 110 90 70 50 80 SEM1= c 110 111 112 113 111.5 SEM1= d 115 95 75 55 85 SEM2= d 111 112 113 114 112.5 SEM2= 111.25 91.25 71.25 51.25 81.25 SEM3= 110.25 111.25 112.25 113.25 111.75 SEM3= 1.6 ICC b. ICC c. 10 1.6-d. ICC a. b. A d +2 A d +20 ICC ICC SEM 1.6 b. c. d. SEM 1.6-e. ICC ICC31 1 e. 10 f. ICC

22 1 g. ICC11 ICC21 ICC31 ICC11ICC21 ICC31 1.6-h. d +10 ICC 11 ICC21 AD ICC31 1.6-i. d +5 d 1.6-h. d ICC11 ICC21 h. i. h. i. j. ICC11 ICC21 ICC SEM ICC ICC ICC 0 ICC

1.6. 23 1.6 110 10 AD 4 A B C D A B C D 1 126 122 131 125 1 6 5 4 7 2 137 143 141 141 2 6 8 6 8 3 113 119 115 105 3 15 14 12 15 4 153 143 135 144 4 4 4 1 0 5 146 157 150 149 5 11 10 11 11 6 161 157 160 160 6 15 14 15 18 7 110 109 105 113 7 9 12 9 12 8 145 151 152 156 8 5 2 4 5 9 126 141 132 122 9 14 12 14 16 10 114 126 130 125 10 9 8 7 8 133.1 136.8 135.1 134.0 9.4 8.9 8.3 10.0 17.95 16.79 16.75 18.63 4.20 4.23 4.67 5.50 1.6.1 1.3 df M S 10319.5 9 1146.6 BMS 40.4 76.1 3 25.4 JMS 0.9 765.9 27 28.4 EMS 740.6 9 82.3 BMS 47.5 15.7 3 5.2 JMS 3.02 46.8 27 1.7 EMS p 0.01 p 0.05 BMSJMSEMS ICC21

24 1 BMS EMS ICC2 1 BMS +k 1EMS + k JMS EMS /n 1146.6 28.4 = 1146.6+(4 1) 28.4+4 25.4 28.4 /10 1118.2 1230.6 ICC2 1 0.909 95 [1.3.2 ] ˆρ F J ν ICC2 1 0.909 JMS/EMS 0.89 (k 1)(n 1)kˆρF J + n[1 + (k 1)ˆρ] kˆρ 2 (n 1)k 2 ˆρ 2 FJ 2 +n[1 + (k 1)ˆρ] kˆρ 2 F (4 1) (10 1) 4 0.909 0.89 + 10 [1 + (4 1) 0.909] 4 0.9092 = (10 1) 4 2 0.909 2 0.89 2 +10[1 + (4 1) 0.909] 4 0.909 2 29.95 F 1 α/2 (n 1) ν = F (0.975929.95) 3.561 F = F 1 α/2 ν (n 1) F (0.97529.959) 2.576 n(bms F EMS) F [kjms +(kn k n)ems]+nbms ρ n(f BMS EMS) ICC(2,1) kjms +(kn k n)ems + nf BMS 10 (1146.6 3.561 28.4) 3.561 [4 25.4+(410 4 10) 28.4]+101146.6 ρ ICC(2,1) 10 (2.576 1146.6 28.4) 4 25.4+(410 4 10) 28.4+102.576 1146.6 0.7232 ρ ICC(2,1) 0.963 q q SEM = JMS EMS /n + EMS25.4 28.4 /10 + 28.45.30 95 0.7232 ρ0 ρ 0.7 5 ICC2 1 0.906 0.776 ρ ICC(2,1) 0.973 SEM 1.43 H 0 ρ 0.7 5 SEM

1.6. 25 1.6.2 A B C D A B C D a. c. d. 1.7 1.7 2 box plot a. b.c. d. a. b. SEM SEM

26 1 1.6.3 D ICC21 0.909 ICC21 0.906 0.900.99 0.01 1.4.4 1.8 12 10 8 6 4 2 0 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 0.98 5 1.8 ICC ρ 0.98 5 ρ0.99 10

1.6. 27 036-8564 66-1 FAX 0172 39 5981 E mailpteiki@cc.hirosaki-u.ac.jp URLhttp://www.hs.hirosaki-u.ac.jp/pt/eiki/

29 [1] 1995. [2] 1992. [3] Fisher RA 1975p167-197. [4] Shrout PE,Fleiss JLIntraclass Correlations:Uses in Assessing Rater ReliabilityPsychol Bull 86 420-4281979. [5] James WY,Connie LB,et.al.:Reliability of goniometric measurements and visual estimates of ankle joint active range of motion obtained in a clinical setting.arch Phys Med Rehabil 74:1113-1118,1993. [6] Reliability. 41:945-952,1993. [7]. 12:113-120,1997. [8] Gabrielle R,Maria S:Reliability of assessment tools in rehabilitation:an illustration of appropriate statistical analyses.clinical Rehabilitation 12:187-199,1998. [9] Portney LG,Watkins MP:Foundations of clinical research-applications to practice-,appleton Lange,USA,1993,p505-516. [10] Bartko JJThe intraclass correlation coefficient as a measure of reliability.psychological Reports 19 3-111966. [11] Bartko JJOn various intraclass correlation reliability coefficients.psychological Bulletin 83762-765 1976. [12] Landis JR,Koch GG:The measurement of observer agreement for categorical data.biometrics. 33,159-174,1977. [13] Eliasziw M,Young SL,et al.:statistical methodology for the concurrent assessment of interrater and intrarater reliability:using goniometric measurements as an example.physical Therapy 74:777-788,1994. [14] Stratford PW,Goldsmith CH:Use of the error as a reliability index of interest:an applied eample using elbow flexor strength data.physical Therapy 77:745-750,1997.