1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

Similar documents
n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

chap1_MDpotentials.ppt

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

meiji_resume_1.PDF

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

TOP URL 1


SiC SiC QMAS(Quantum MAterials Simulator) VASP(Vienna Ab-initio Simulation Package) SiC 3C, 4H, 6H-SiC EV VASP VASP 3C, 4H, 6H-SiC (0001) (11 20) (1 1

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T


TOP URL 1

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

: , 2.0, 3.0, 2.0, (%) ( 2.

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

201711grade1ouyou.pdf

koji07-01.dvi

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co


all.dvi

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

直交座標系の回転

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

Dynkin Serre Weyl

Note.tex 2008/09/19( )

untitled

4/15 No.

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

i


( )

,,..,. 1

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

02-量子力学の復習

all.dvi


* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

スケーリング理論とはなにか? - --尺度を変えて見えること--

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

linearal1.dvi

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

chap10.dvi

untitled

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

newmain.dvi

nsg02-13/ky045059301600033210

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

総研大恒星進化概要.dvi

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

ohpr.dvi

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence


~nabe/lecture/index.html 2

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

all.dvi

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

Contents 1 Jeans (

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論


x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

tnbp59-21_Web:P2/ky132379509610002944

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

chap9.dvi

2/24

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r)

2000年度『数学展望 I』講義録

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

OHP.dvi

prime number theorem

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

基礎数学I

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

gr09.dvi

0406_total.pdf

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

I

研修コーナー

パーキンソン病治療ガイドライン2002

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Transcription:

1. 1-1. 1-. 1-3.. MD -1. -. -3. MD 1

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Structural relaxation by means of model potential Detail investigation by nonempirical calculation Figure 1.1:,.,. ( )

,,... Fig. 1., Table I). (a) Experiment or Obsevations (b) Non-empirical Calculations (c) Non-empirical Calculations Interatomic Potentials Interatomic Potentials Simulation of Structures and Physical Properties Simulation of Structures and Physical Properties Simulation of Structures and Physical Properties Figure 1.: Table I: method MD reliability Empirical (Classical) >1 4 low Non-empirical (Quantum, PWPP) 1 high Non-empirical (Quantum, All-electron) 1 1 very high Quantum-Classical >1 4 moderately high,.,.,.,.,, ( )..., 3

1... 1,..,,, LJ BMH., ( ) ().. 1....,..,..,, 1,., R α (α ), M α (α ), r i (i ), m e ( )., H = α h α M α i h m e i + V (r 1,, r i, ; R 1,, R α, ). (1.1) V, V (r 1,, r i, ; R 1,, R α, )= α,i Z α e r i R α + i>j e r i r j + α>β Z α Z β e R α R β (1.). Z. HΦ(r 1,, r i, ; R 1,, R α, )=ɛφ(r 1,, r i, ; R 1,, R α, ) (1.3). Φ(r 1, ; R 1, )=Ψ(r 1, ; R 1, )φ(r 1, ) (1.4). Ψ (1.1), H e = i h m e i α,i Z α e r i R α + i>j e r i r j (1.5) 4

, H e Ψ(r 1, ; R 1, )=E(R 1, )Ψ(r 1, ; R 1, ) (1.6). E. (1.4) (1.1) (1.3), HΨ =Φ h α + E(R 1, )+ Z α Z β e M α α R α R β φ h ( α Ψ α φ + φ α Ψ) M α>β α α (1.7). (1.1) Ψ, (1.7), φ, h α + E(R 1, )+ Z α Z β e M α α R α R β φ(r 1, )=ɛφ(r 1, ) (1.8) α>β. (1.8),. (Born-Oppenheimer ). (1.8), 3,. R.,, E R., R., ( ). W (R 1, ), i f i = W R i. (1.9) i j, W Ψ αβ (i, j) = (1.1) u α (i) u β (j). α, β =(x, y, z), u = R R. ( ). ( ) (LD).,... -,,, Grüneisen ( ).,,,,. 5

:, W = 1 c ijkl ɛ ij ɛkl (1.11) ijkl. 3 3, 4 c ijkl. ( ) 1( ). x 3 ε 33 ε 3 ε 13 ε ε 31 1 ε 1 ε ε 11 ε 3 x x 1 Figure 1.3: R ψ(r 1, )., ψ ij (R i, R j ). dψ ij R i R j f ij = d R i R j R i R j. (1.1) i, f i = dψ ij R i R 1 j d R i R j R i R j = i j i ψ ij (1.13) R i j i. f i = U T R i (1.14). (1.9) U T W C,,. W = U T + C. (1.15), ψ ij (p 1,p, ; R i, R j ), (1.15). 6

1.3,.,.,... ( ),.,. LCAO HF (DFT) - (LDA), (GGA) + (PWPP) (DFT) - (LDA), (GGA) (FLAPW, FPLMTO, KKR) (DFT) - (LDA), (GGA) ( ),. LCAO,. HF, DFT. SCF., PWPP, (Table I).,. (Troullier-Martins(TM) ).,.,., 1 (Table I). ( smooth Hunkel.), PWPP., LDA GGA( Perdew, Burke, Ernzerhof 1996, PBE). LDA GGA. LDA GGA, 7

GGA.,. LDA,,, ( ) GGA (CI), LDA GGA 1 ( ),., (1.15),., w = X {W (X) U T (p 1,p, ; X)} (1.16) (p 1,p, )., X, X,., 1. ( ) X.. ɛ ( )..., (Fig. 1.4, Table II). 3., ( ).,. ( ), ( ) 8

1: SiO, +BMH + +Morse. ψ ij = q ( ) iq j Ai + A j r ij +f(b i +B j )exp C ic j r ij B i + B j rij 6 +D ij [exp { β(r ij rij)} exp{ β(r ij rij)}] (1.17) -9.91-9.915 E (kj/mol) -9.9 ε=(δ,δ,δ,,,) -9.91-9.915 E (kj/mol) -9.9 ε=(δ,,,,,) -9.95-9.95-9.91-9.915 E (kj/mol) -9.9 -. -.1.1. ε=(,,δ,,,) -9.91-9.915 E (kj/mol) -9.9 -. -.1.1. ε=(δ,,δ,,,) -9.95 -. -.1.1. -9.95 -. -.1.1. -9.91-9.915 E (kj/mol) -9.9 ε=(δ,,-δ,,,) LDA Model empirical Model fit -9.95 -. -.1.1. Figure 1.4: SiO. ɛ =(ɛ 11,ɛ,ɛ 33,ɛ 3,ɛ 31,ɛ 1 ) Table II: 3K MD Model a (Å) c (Å) c/a B (GPa) α (1 5 K 1) Exp 4.913 5.45 1.1 38.43 Empirical 4.96 5.43 1.97 43 4.93 PWPP-LDA fit 4.914 5.396 1.98 38 4.54 PWPP-LDA 4.873 5.376 1.13 39 Fig. 1.4 5 (, ), α-. Empirical a. Fig. 1.4 δ. LDAfit PWPP-LDA. PWPP-LDA c. Empirical, LDA fit (?). 9

: (Mg(OH) ) H O,,..,.. d O-H Figure 1.5: brucite ( ) PWPP-GGA brucite - ( ) Table III: brucite - Interaction type of d O H length (Å) hydrogen bond W-W 1.89 B-B 1.838 Non 1.93 PWPP-GGA.13 GGA fit.56 (1.16),..,..,, ( ). ( ). 1

MD Ridid Ion Model(RIM)... ( ),, L = T part + T param V part,param V param (.18) MD. T, V, part,param.. (EEM) MD MD. Embeded Atom Model ( ), Breathing Shell Model..1, ( ) ( ) ( ) F E S µ = = θ (.19) N N N, ( ) E µ = N ( ) F =lim θ N (.). F, E.. E(q) =E + aq + bq + O(q 3 ), (.1). 3 ( )., E(+1) E() = a + b E() E( 1) = a b (.), I A. µ I + A (.3) 11

. Mulliken, χ = I + A (.4), µ χ..,,. n, χ 1 = χ = = χ n (.5). (Electronegativity Equalization Method)., E ({q i }) = E ({q i}) = = E ({q i}) (.6) q 1 q q n... n, (.6) n 1 q i = n q (.7) i n, ( n q = ). (Charge Equilibration) (Mortier et al. 1986, Rappé and Goddard 1991, etc.)., (.1) (, J ii ) (J ij ), E({q i })=J ii (q i )+ J ij (r ij ; q i,q j ) (.8) i j>i. J ij (i j) ρ i, ρ j J ij (r ij ; q i,q j )= ρ i (r 1,q i ) 1 ρ j (r,q j )dr 1 dr (.9) r 1.. R i δ, ρ i (r,q i ) = Z i eδ( r R i )+(q i Z i )ef i ( r R i ) (.3). Z, f. f i (r) = [ ζ 3 i π exp( ζ ir) ] (.31) 1

. (.3)(.31), (.9), MD. (.8) i = j., (.1). (.1) q 1 (.) a = I + A b = I A χ (.3).,, J ii (q) =χ q + η q (.33). (Fig..6). η 6 5 8 E A (ev) 5 4 3 1 Na E A (ev) 4 3 1 K E A (ev) 6 4 H..4.6.8 1 q (e) Mg..4.6.8 1 q (e) Ca..4.6.8 1-1 Cl q (e) E A (ev) 1 E A (ev) 1 E A (ev) - -3 1 6 5 4 Al q (e) 1 q (e) 1 8 Si -4-1 -.8 -.6 -.4 -. -1 O q (e) E A (ev) 3 E A (ev) 6 4 E A (ev) - 1-3 1 3 q (e) 1 3 4 q (e) -4-1 -.8 -.6 -.4 -. q (e) Figure.6:. 13

, n. 1 1 1 1 J 1 q η1 η J1 J 3 q 1 q J13 J q 1 n q J1n q 1 J 31 q 3 η1 J 3 q 3 J1 q 1 η3 J13 J q 1 3n q 3 J1n q 1....... q 1 q q 3.. = n q χ 1 χ χ 1 χ 3. J n1 q n η 1 J n q n J1 q 1 J n3 q n J13 q 1 η n J1n q 1 q n χ 1 χ n (.34) 1, Ewald. J ij / q i, G,i,j 3. DFCMD.. (Fig..7). 4 Coulomb Atomic Total E (kj/mol) - -4 1 q cation (e) Figure.7:.3 (DFC)MD.,. n n, MD., MD (Dynamical Fluctuating Charge)MD (Rick et al. 1994).. N 1 N L = m iṙi 1 N + M q q i U(r, q) λ q i. (.35) i i i 14

m i, M q, λ i,,. 1,. 3 MD, (.9). 4... U(r, q) m i r i = (.36) r i U(r, q) M i q i = λ = χ i λ (.37) q i N q = (.38) i λ = 1 N N χ i (.39) λ., i M i q i = 1 N N (χ i χ j ) (.4) j. DFC,.,.. 1:MgO(51 ) I. ( ): =, =fix, Mg( ), O( )1 4 3 q (e) 1 1 Step 15

II. ( ): =±1.7, fix 1.7 1.65 q (e) 1.6 1.55 1.5 1 Step III. + : = 1.8 q (e) 1.6 1.4 1. 4 6 8 1 Step IV. (Cauchy relation) Method c 11 (GPa) c 1 (GPa) c 44 (GPa) c /c 44 Exp 97 95 156.6 Empirical RIM 79 13 19 1. LDA fit RIM 18 147 149 1. LDA fit DFC 87 16 163.7 FPLMTO-LDA 318 87 144.6 16

:MgO( ) I. (q i >q bulk :, q i <q bulk : ) Mg O II. (q i >q bulk :, q i <q bulk :, :Mg, :O) V O " V Mg - 17

3:DFC-MD I. (N =51 ) 1 8 Time consuming 6 4 1 3 Number of atoms II. Ewald (N (G) = 15 ) 3 Time consuming 1 1 3 4 Number of G 18